【題目】如圖,點分別在反比例函數(shù)的圖象上.若,,則的值為(

A.B.C.D.

【答案】A

【解析】

分別過點AACx軸于C,過點BBDx軸于D,根據(jù)點A所在的圖象可設(shè)點A的坐標(biāo)為(),根據(jù)相似三角形的判定證出△BDO∽△OCA,列出比例式即可求出點B的坐標(biāo),然后代入中即可求出的值.

解:分別過點AACx軸于C,過點BBDx軸于D,

∵點在反比例函數(shù)

設(shè)點A的坐標(biāo)為(),則OC=x,AC=,

∴∠BDO=OCA=90°

∴∠BOD+∠AOC=180°-∠AOB=90°,∠OAC+∠AOC=90°

∴∠BOD=OAC

∴△BDO∽△OCA

解得:OD=2AC=,BD=2OC=2x

∵點B在第二象限

∴點B的坐標(biāo)為(

將點B坐標(biāo)代入中,解得

故選A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)用配方法解方程:x2-2x-2=0;(2)已知關(guān)于x的方程(m-2x2+m-2x-1=0有兩個相等的實數(shù)根,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,將矩形ABCD沿AF折疊,使點D落在BC邊的點E處,過點E作EG∥CD交AF于點G,連接DG.

(1)求證:四邊形EFDG是菱形;

(2)求證:EG2=GF×AF;

(3)若,折痕AF=5cm,則矩形ABCD的周長為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料,并解決問題:

材料1:對于一個三位數(shù)其十位數(shù)字等于個位數(shù)字與百位數(shù)字的差的兩倍,則我們稱這樣的數(shù)為倍差數(shù)122,;

材料2:若一個數(shù)能夠?qū)懗?/span>均為正整數(shù),且,則我們稱這樣的數(shù)為不完全平方差數(shù),最大時,我們稱此時的的一組最優(yōu)分解數(shù),井規(guī)定.例如,因為:,,,所以;

1)求證:任意的一個倍差數(shù)與其百位數(shù)字之和能夠被3整除;

2)若一個小于300的三位數(shù)其中,,且均為整數(shù))既是一個不完全平方差數(shù),也是一個倍差數(shù),求所有的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在△OAB中,OA=OB,⊙O經(jīng)過AB的中點C,與OB交于點D,且與BO的延長線交于點E,連接EC,CD

(1)試判斷ABO的位置關(guān)系,并加以證明;

(2)若tanE=,⊙O的半徑為3,求OA的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠生產(chǎn)部門為了解本部門工人的生產(chǎn)能力情況,進行了抽樣調(diào)查.該部門隨機抽取了30名工人某天每人加工零件的個數(shù),數(shù)據(jù)如下:

20

21

19

16

27

18

31

29

21

22

25

20

19

22

35

33

19

17

18

29

18

35

22

15

18

18

31

31

19

22

整理上面數(shù)據(jù),得到條形統(tǒng)計圖:

樣本數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù)如下表所示:

統(tǒng)計量

平均數(shù)

眾數(shù)

中位數(shù)

數(shù)值

23

m

21

根據(jù)以上信息,解答下列問題:

(1)上表中眾數(shù)m的值為   ;

(2)為調(diào)動工人的積極性,該部門根據(jù)工人每天加工零件的個數(shù)制定了獎勵標(biāo)準(zhǔn),凡達到或超過這個標(biāo)準(zhǔn)的工人將獲得獎勵.如果想讓一半左右的工人能獲獎,應(yīng)根據(jù)   來確定獎勵標(biāo)準(zhǔn)比較合適.(填平均數(shù)”、“眾數(shù)中位數(shù)”)

(3)該部門規(guī)定:每天加工零件的個數(shù)達到或超過25個的工人為生產(chǎn)能手.若該部門有300名工人,試估計該部門生產(chǎn)能手的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某區(qū)教育系統(tǒng)為了更好地宣傳掃黑除惡專項斗爭,印制了應(yīng)知應(yīng)會手冊,該區(qū)教育局想了解教師對掃黑除惡專項斗爭應(yīng)知應(yīng)會知識掌握程度,抽取了部分教師進行了測試,并將測試成績繪制成下面兩幅統(tǒng)計圖,請根據(jù)統(tǒng)計圖中提供的信息,回答下面問題:

1)計算樣本中,成績?yōu)?/span>98分的教師有   人,并補全兩個統(tǒng)計圖;

2)樣本中,測試成績的眾數(shù)是   ,中位數(shù)是   ;

3)若該區(qū)共有教師6880名,根據(jù)此次成績估計該區(qū)大約有多少名教師已全部掌握掃黑除惡專項斗爭應(yīng)知應(yīng)會知識?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線軸交于點,與軸交于點,點軸正半軸上,

1)求直線的解析式;

2)點是射線上一點,連接,設(shè)點的橫坐標(biāo)為的面積為,求的函數(shù)解析式,并直接寫出自變量的取值范圍;

3)在(2)的條件下,軸交于點,連接,過點的垂線,垂足為點,直線軸于點,交線段于點,直線軸于點,當(dāng)時,求直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,∠ACB=45°,DAC上一點,AD=5,連接BD,將△ABD沿BD翻折至△EBD,點A的對應(yīng)點E點恰好落在邊BC上.延長BC至點F,連接DF,若CF=2,tanABD=,則DF長為( 。

A.B.C.5D.7

查看答案和解析>>

同步練習(xí)冊答案