無(wú)論m為何實(shí)數(shù),直線y=2x+m與y=-x+4的交點(diǎn)不可能在( 。
分析:先解方程組組
y=2x+m
y=-x+4
確定交點(diǎn)的橫縱坐標(biāo),然后分別根據(jù)各象限內(nèi)點(diǎn)的坐標(biāo)特征求出m的范圍,再根據(jù)m的取值范圍進(jìn)行判斷.
解答:解:解方程組
y=2x+m
y=-x+4
x=
4-m
3
y=
m+8
3
,
4-m
3
>0
m+8
3
>0
得-8<m<4;解
4-m
3
>0
m+8
3
<0
得m<-8;解
4-m
3
<0
m+8
3
>0
,解得:m>4,
4-m
3
<0
m+8
3
<0
得不等式組無(wú)解;
所以無(wú)論m為何實(shí)數(shù),直線y=2x+m與y=-x+4的交點(diǎn)不可能在第三象限.
故選:C.
點(diǎn)評(píng):本題考查了兩直線平行或相交的問(wèn)題:直線y=k1x+b1(k1≠0)和直線y=k2x+b2(k2≠0)平行,則k1=k2;若直線y=k1x+b1(k1≠0)和直線y=k2x+b2(k2≠0)相交,則交點(diǎn)坐標(biāo)滿(mǎn)足兩函數(shù)的解析式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

4、無(wú)論m為何實(shí)數(shù),直線y=x+2m與y=-x+4的交點(diǎn)不可能在(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

10、無(wú)論m為何實(shí)數(shù),直線y=x+m與y=-x+4的交點(diǎn)不可能在第
象限.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

2、無(wú)論m為何實(shí)數(shù),直線y=2x+m與直線y=-x+3的交點(diǎn)都不可能在( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知二次三項(xiàng)式ax2+bx+c(a>0)
(1)當(dāng)c<0時(shí),求函數(shù)y=-2|ax2+bx+c|-1的最大值;
(2)若無(wú)論k為何實(shí)數(shù),直線y=k(x-1)-
k24
與拋物線y=ax2+bx+c有且只有一個(gè)公共點(diǎn),求a+b+c的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案