【題目】在平面直角坐標(biāo)系中,點A(3,﹣2)在對稱軸為直線x=2的拋物線y=x2+bx+c的圖象上,其頂點為B.
(1)求頂點B的坐標(biāo);
(2)點C在對稱軸上,若△ABC的面積為2,求點C的坐標(biāo);
(3)將拋物線向左或右平移,使得新拋物線的頂點落在y軸上,問原拋物線上是否存在點M,平移后的對應(yīng)點為N,滿足OM=ON?如果存在,求出點M,N的坐標(biāo);如果不存在,請說明理由.
【答案】(1)(2,-3);(2)(2,1)或(2,﹣7);(3)見解析.
【解析】分析:根據(jù)拋物線的對稱軸為直線x=2,即可求出,把點代入拋物線的解析式即可求出,把拋物線的解析式通過配方變成頂點式,即可求出點的坐標(biāo).
設(shè)則點A到對稱軸的距離是1,求出的值即可.
拋物線的頂點坐標(biāo)為,平移后拋物線的頂點坐標(biāo)在y軸上,則拋物線向左平移了2個單位長度.平移后拋物線的解析式為: MN=2.點M與點N關(guān)于y軸對稱,設(shè)則 分別代入解析式可得解得
即可求出點的坐標(biāo).
詳解:(1)∵拋物線的對稱軸為直線x=2,
∴,
解得:
∴
把代入,得
解得
∴該拋物線解析式為:
頂點的坐標(biāo)為:
(2)設(shè)則
∵點A到對稱軸的距離是1,
∴ 即a=1或
∴點C的坐標(biāo)是或;
(3)∵拋物線的頂點坐標(biāo)為,平移后拋物線的頂點坐標(biāo)在y軸上,
∴拋物線向左平移了2個單位長度.
∴平移后拋物線的解析式為: MN=2.
∵
∴點O在線段MN的垂直平分線上,
又MN∥x軸,
∴點M與點N關(guān)于y軸對稱,
設(shè)則 分別代入解析式可得
解得
∴點M的坐標(biāo)為點N的坐標(biāo)為.即原拋物線存在點M,平移后的對應(yīng)點為N,滿足OM=ON,此時點M的坐標(biāo)為點N的坐標(biāo)為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在等腰△ABC中,AB=AC=,BC=4,點D從A出發(fā)以每秒個單位的速度向點B運動,同時點E從點B出發(fā)以每秒4個單位的速度向點C運動,在DE的右側(cè)作∠DEF=∠B,交直線AC于點F,設(shè)運動的時間為t秒,則當(dāng)△ADF是一個以AD為腰的等腰三角形時,t的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣3(a≠0)的頂點為E,該拋物線與x軸交于A(﹣1,0)、B(3,0)兩點,與y軸交于點C,直線y=﹣x+1與y軸交于點D.
(1)求拋物線的解析式;
(2)證明:△DBO∽△EBC;
(3)在拋物線的對稱軸上是否存在點P,使△PBC是等腰三角形?若存在,請直接寫出符合條件的P點坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,對角線AC,BD交于點O,點E,點F在BD上,且 BE=DF 連接AE并延長,交BC于點G,連接CF并延長,交AD于點H.
(1)求證:△AOE≌△COF;
(2)若AC平分∠HAG,求證:四邊形AGCH是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校辦公樓前有一長為,寬為的長方形空地,在中心位置留出一個半徑為的圓形區(qū)域建一個噴泉,兩邊是兩塊長方形的休息區(qū),陰影部分為綠地.
(1)用含字母和的式子表示陰影部分的面積;
(2)當(dāng)=4,=3,=1,=2時,陰影部分面積是多少?(取3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)軸上的A、B兩點所表示的數(shù)分別為a、b,a+b<0,ab<0.
(1)原點O的位置在
A.點A的右邊
B.點B的左邊
C.點A與點B之間 ,且靠近點A
D.點A與點B之間 ,且靠近點B
(2)若a-b=2,
①利用數(shù)軸比較大小,a 1,b -1;(填“>”、“<”或“=”).
②化簡:|a-1|+|b+1|.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中∠C=90°,∠BAC=30°,AB=8,以2為邊長的正方形DEFG的一邊GD在直線AB上,且點D與點A重合,現(xiàn)將正方形DEFG沿A﹣B的方向以每秒1個單位的速度勻速運動,當(dāng)點D與點B重合時停止,則在這個運動過程中,正方形DEFG與△ABC的重合部分的面積S與運動時間t之間的函數(shù)關(guān)系圖象大致是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知函數(shù)(x>0)的圖象經(jīng)過點A,B,點A的坐標(biāo)為(1,2).過點A作AC∥y軸,AC=1(點C位于點A的下方),過點C作CD∥x軸,與函數(shù)的圖象交于點D,過點B作BE⊥CD,垂足E在線段CD上,連接OC,OD.
(1)求△OCD的面積;
(2)當(dāng)BE=AC時,求CE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com