【題目】如圖,P是等邊三角形ABC內(nèi)一點,將線段AP繞點A順時針旋轉(zhuǎn)60°得到線段AQ,連接BQ.若PA=6,PB=8,PC=10,則四邊形APBQ的面積為 .
【答案】24+9
【解析】解:連結(jié)PQ,如圖, ∵△ABC為等邊三角形,
∴∠BAC=60°,AB=AC,
∵線段AP繞點A順時針旋轉(zhuǎn)60°得到線段AQ,
∴AP=PQ=6,∠PAQ=60°,
∴△APQ為等邊三角形,
∴PQ=AP=6,
∵∠CAP+∠BAP=60°,∠BAP+∠BAQ=60°,
∴∠CAP=∠BAQ,
在△APC和△ABQ中,
,
∴△APC≌△ABQ,
∴PC=QB=10,
在△BPQ中,∵PB2=82=64,PQ2=62 , BQ2=102 ,
而64+36=100,
∴PB2+PQ2=BQ2 ,
∴△PBQ為直角三角形,∠BPQ=90°,
∴S四邊形APBQ=S△BPQ+S△APQ= ×6×8+ ×62=24+9 .
故答案為24+9 .
連結(jié)PQ,如圖,根據(jù)等邊三角形的性質(zhì)得∠BAC=60°,AB=AC,再根據(jù)旋轉(zhuǎn)的性質(zhì)得AP=PQ=6,∠PAQ=60°,則可判斷△APQ為等邊三角形,所以PQ=AP=6,接著證明△APC≌△ABQ得到PC=QB=10,然后利用勾股定理的逆定理證明△PBQ為直角三角形,再根據(jù)三角形面積公式,利用S四邊形APBQ=S△BPQ+S△APQ進(jìn)行計算.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABP中,C是BP邊上一點,∠PAC=∠PBA,⊙O是△ABC的外接圓,AD是⊙O的直徑,且交BP于點E.
(1)求證:PA是⊙O的切線;
(2)過點C作CF⊥AD,垂足為點F,延長CF交AB于點C,若ACAB=12,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司組織退休職工組團(tuán)前往某景點游覽參觀,參加人員共70人.旅游景點規(guī)定:①門票每人60元,無優(yōu)惠;②上山游覽必須乘坐景點安排的觀光車游覽,觀光車有小型車和中型車兩類,分別可供4名和11名乘客乘坐;且小型車每輛收費60元,中型車每人收費10元.若70人正好坐滿每輛車且參觀游覽的總費用不超過5000元,問景點安排的小型車和中型車各多少輛?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察如圖所示的圖形,回答下列問題:
(1) 圖中的點被線段隔開分成四層,第一層有1個點,第二層有3個點,第三層有5個點,第四層有___________個點;
(2) 如果要你繼續(xù)畫下去,那么第五層有________點, 第10層有_________點;
(3) 某一層上有77個點,你可知道這是第_________層;
(4) 第一層與第二層的和是__________,前三層的和是_________,前四層和為____________,
你有沒有發(fā)現(xiàn)什么規(guī)律?
根據(jù)你的推測,前一百層的和是___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正方形ABCD和正方形AEFG有一個公共點A,點G、E分別在線段AD、AB上,若將正方形AEFG繞點A按順時針方向旋轉(zhuǎn),連接DG,在旋轉(zhuǎn)的過程中,你能否找到一條線段的長與線段DG的長度始終相等?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“十一”黃金周期間,歡歡一家隨旅游團(tuán)到某風(fēng)景區(qū)旅游,集體門票的收費標(biāo)準(zhǔn)是: 人以內(nèi)(含 人),每人元;超過人的,超過的部分每人元.
()寫出應(yīng)收門票費(元)與游覽人數(shù)(人)(其中)之間的關(guān)系式.
()利用()中的關(guān)系式計算:若歡歡一家所在的旅游團(tuán)共人,那么該旅游團(tuán)購門票共花了多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,點在第一象限,過點A向x軸作垂線,垂足為點B,連接OA,,點M從O出發(fā),沿y軸的正半軸以每秒2個單位長度的速度運動,點N從點B出發(fā)以每秒3個單位長度的速度向x軸負(fù)方向運動,點M與點N同時出發(fā),設(shè)點M的運動時間為t秒,連接AM,AN,MN.
求a的值;
當(dāng)時,
請?zhí)骄?/span>,,之間的數(shù)量關(guān)系,并說明理由;
試判斷四邊形AMON的面積是否變化?若不變化,請求出其值;若變化,請說明理由.
當(dāng)時,請求出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.
(1)求DE的長;
(2)求△ADB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校興趣小組對網(wǎng)上吐糟較為頻繁的“醫(yī)患關(guān)系”產(chǎn)生了興趣,利用節(jié)假日在某社區(qū)開展了“造成醫(yī)患關(guān)系緊張的原因”的問卷調(diào)查.
造成醫(yī)患關(guān)系緊張的原因(單選) |
根據(jù)調(diào)查結(jié)果繪制出了如下兩幅尚不完整的統(tǒng)計圖.
根據(jù)以上信息解答下列問題:
(1)這次接受調(diào)查的總?cè)藬?shù)為人;
(2)在扇形統(tǒng)計圖中,“A”所在扇形的圓心角的度數(shù)為;
(3)補(bǔ)全條形統(tǒng)計圖;
(4)若該市有1000萬人,請你估計選D的總?cè)藬?shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com