【題目】函數(shù))在同一直角坐標系中的大致圖象可能是(

A. B. C. D.

【答案】D

【解析】

本題可先由反比例函數(shù)的圖象得到字母系數(shù)的正負,再與二次函數(shù)的圖象相比較看是否一致.

解:由解析式y=-kx2+k可得:拋物線對稱軸x=0;
A、由雙曲線的兩支分別位于二、四象限,可得k0,則-k0,拋物線開口方向向上、拋物線與y軸的交點為y軸的正半軸上;本圖象與k的取值相矛盾,故A錯誤;
B、由雙曲線的兩支分別位于一、三象限,可得k0,則-k0,拋物線開口方向向下、拋物線與y軸的交點在y軸的負半軸上,本圖象不符合題意,故B錯誤;
C、由雙曲線的兩支分別位于二、四象限,可得k<0,則-k>0,拋物線開口方向向上、拋物線與y軸的交點在y軸的正半軸上,本圖象與k的取值相矛盾,故C錯誤;
D、由雙曲線的兩支分別位于一、三象限,可得k0,則-k0,拋物線開口方向向下、拋物線與y軸的交點在y軸的負半軸上,本圖象與k的取值相符合,故D正確.
故選:D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在一條筆直的公路上有、兩地,甲乙兩人同時出發(fā),甲騎自行車從地到地,乙騎自行車從地到地,到達地后立即按原路返回.如圖是甲、乙兩人離地的距離與行駛時間之間的函數(shù)圖象,下列說法中①兩地相距30千米;②甲的速度為15千米/時;③點的坐標為(,20);④當甲、乙兩人相距10千米時,他們的行駛時間是小時或小時. 正確的個數(shù)為( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,菱形OBCD的邊OBx軸上,反比例函數(shù)y=x0)的圖象經(jīng)過菱形對角線的交點A,且與邊BC交于點F,點A的坐標為(4,2).

1)求反比例函數(shù)的表達式;

2)求BC所在直線的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工地需要利用炸藥實施爆破,操作人員點燃導火線后,要在炸藥爆炸前跑到300米以外的安全區(qū)域,炸藥導火線的長度y(厘米)與燃燒的時間x(秒)之間的函數(shù)關系如圖所示.

1)請寫出點B的實際意義,

2)求yx之間的函數(shù)關系式,并寫出自變量的取值范圍.

3)問操作人員跑步的速度必須超過多少,才能保證安全.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校開展拓展課程展示活動,需要制作A,B兩種型號的宣傳廣告共20個,已知A,B兩種廣告牌的單價分別為40元,70

1)若根據(jù)活動需要,A種廣告牌數(shù)量與B種廣告牌數(shù)量之比為32,需要多少費用?

2)若需制作A,B兩種型號的宣傳廣告牌,其中B種型號不少于5個,制作總費用不超過1000元,則有幾種制作方案?每一種制作方案的費用分別是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面材料:

觀察與思考:閱讀下列材料,并解決后面的問題.在銳角中,、的對邊分別是a、b、c,過AD(如圖),則,,即,,于是,即.同理有:,所以.

即:在一個三角形中,各邊和它所對角的正弦的比相等.在銳角三角形中,若已知三個元素(至少有一條邊),運用上述結論和有關定理就可以求出其余三個未知元素.根據(jù)上述材料,完成下列各題.

1)如圖,中,,,,則;

2)如圖,一貨輪在C處測得燈塔A在貨輪的北偏西30°的方向上,隨后貨輪以60海里/時的速度按北偏東30°的方向航行,半小時后到達B處,此時又測得燈塔A在貨輪的北偏西75°的方向上(如圖),求此時貨輪距燈塔A的距離AB.

3)在(2)的條件下,試求75°的正弦值.(結果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,點E為矩形ABCD的邊AD上一點,點P從點B出發(fā)沿BE→ED→DC運動到點C停止,點Q從點B出發(fā)沿BC運動到點C停止,它們運動的速度都是1cm/s.若點P、Q同時開始運動,設運動時間為t(s),△BPQ的面積為y(cm2),已知yt之間的函數(shù)圖象如圖2所示.給出下列結論:0<t≤10時,△BPQ是等腰三角形;②SABE=48cm2;③14<t<22時,y=110﹣5t;④在運動過程中,使得△ABP是等腰三角形的P點一共有3個;△BPQ△BEA相似時,t=14.5.其中正確結論的序號是( 。

A. ①④⑤ B. ①②④ C. ①③④ D. ①③⑤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角三角形紙片ABC中,∠ACB=90°,AC=2,BC=4,點D在邊AB上,以CD為折痕將△CBD折疊得到△CPD,CP與邊AB交于點E,若△DEP為直角三角形,則BD的長是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以的一邊為直徑的半圓與其它兩邊,的交點分別為,,且.

1)試判斷的形狀,并說明理由.

2)已知半圓的半徑為5,,求的長.

查看答案和解析>>

同步練習冊答案