【題目】已知和中,,,,(其中),連接、,點為線段的中點,連接、,繞點順時針旋轉(zhuǎn),探究線段與的數(shù)量關(guān)系.
(1)如圖1,點落在邊上時,探究與的數(shù)量關(guān)系,并說明理由;
(2)如圖2,點落在內(nèi)部時,探究與的數(shù)量關(guān)系,并說明理由;
【答案】(1),證明見解析;(2),證明見解析.
【解析】
(1) 延長交于點,先證,可得,再根據(jù)直角三角形斜邊上的中線等于斜邊的一半得,結(jié)合,即可完成證明;
(2)延長,過點作交的延長線于點,連接.先證,可得;再延長、交于點,設(shè)、交于點.證得;最后根據(jù)相似三角形的性質(zhì)和直角三角形的性質(zhì)解答即可.
(1);
證明:延長交于點.
∵,點落在邊上
∴
∴
又∵,
∴
∴
在中,
∴
又∵
∴
(2);
證明:延長,過點作交的延長線于點,連接.
∵
∴
又∵,
∴
∴,
延長、交于點,設(shè)、交于點.
∵
∴
∵,
∴
∴
∵
∴
∵,
∴
∴
∵
∴
∴
又∵
∴
∴
∵
∴
∴即
又∵
在中,
∴
又∵
∴
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校開展“書香校園”活動以來,受到同學(xué)們的廣泛關(guān)注,學(xué)校為了解全校學(xué)生課外閱讀的情況,隨機調(diào)查了部分學(xué)生在一周內(nèi)借閱圖書的次數(shù),并制成如圖不完整的統(tǒng)計表
學(xué)生借閱圖書的次數(shù)
借閱圖書的次數(shù) | 0次 | 1次 | 2次 | 3次 | 4次及以上 |
人數(shù) | 7 | 13 | a | 10 | 3 |
學(xué)生借閱圖書的次數(shù)統(tǒng)計表
請你根據(jù)統(tǒng)計圖表的信息,解答下列問題:
(1)a= ;b=
(2)該調(diào)查統(tǒng)計數(shù)據(jù)的中位數(shù)是__________次
(3)扇形統(tǒng)計圖中,“3次”所對應(yīng)的扇形圓心角度數(shù)是______________;
(4)若該校共有2000名學(xué)生,根據(jù)調(diào)查結(jié)果,估計該校學(xué)生在一周內(nèi)借閱圖書“4次以上”的人數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,AB是⊙O的直徑,點C是過點A的⊙O的切線上一點,連接OC,過點A作OC的垂線交OC于點D,交⊙O于點E,連接CE.
(1)求證:CE與⊙O相切;
(2)連結(jié)BD并延長交AC于點F,若OA=5,sin∠BAE=,求AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小敏參加答題游戲,答對最后兩道單選題就順利通關(guān).第一道單選題有3個選項,,,第二道單選題有4個選項,,,,這兩道題小敏都不會,不過小敏還有一個“求助”機會,使用“求助”可以去掉其中一道題的一個錯誤選項.假設(shè)第一道題的正確選項是,第二道題的正確選項是,解答下列問題:
(1)如果小敏第一道題不使用“求助”,那么她答對第一道題的概率是________;
(2)如果小敏將“求助”留在第二道題使用,用畫樹狀圖或列表的方法,求小敏順利通關(guān)的概率;
(3)小敏選第________道題(選“一”或“二”)使用“求助”,順利通關(guān)的可能性更大.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀對人成長的影響是巨大的,一本好書往往能改變?nèi)说囊簧,每年?/span>4月23日被聯(lián)合國教科文組織確定為“世界讀書日”.藍天中學(xué)為了解八年級學(xué)生本學(xué)期的課外閱讀情況,隨機抽查部分學(xué)生對其課外閱讀量進行統(tǒng)計分析,繪制成兩幅不完整的統(tǒng)計圖.根據(jù)圖示信息,解答下列問題:
(1)求被抽查學(xué)生人數(shù),課外閱讀量的眾數(shù),扇形統(tǒng)計圖中m的值;并將條形統(tǒng)計圖補充完整;
(2)若規(guī)定:本學(xué)期閱讀3本以上(含3本)課外書籍者為完成目標(biāo),據(jù)此估計該校600名學(xué)生中能完成此目標(biāo)的有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小魯在一個不透明的盒子里裝了5個除顏色外其他都相同的小球,其中有3個是紅球,2個是綠球,每次拿一個球然后放回去,拿2次,則至少有一次取到綠球的概率是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,直線交x軸于點A,交y軸于點B,點D在直線AB上,點D的縱坐標(biāo)為6,點C在x軸上且位于原點右側(cè),連接CD,且.
如圖1,求直線CD的解析式;
如圖2,點P在線段AB上點P不與點A,B重合,過點P作軸,交CD于點Q,點E是PQ的中點,設(shè)P點的橫坐標(biāo)為t,EQ的長為d,求d與t之間的函數(shù)關(guān)系式,并直接寫出自變量t的取值范圍;
如圖3,在的條件下,以CQ為斜邊作等腰直角,且點M在直線CD的右側(cè),連接OE,OM,當(dāng)時,求點M的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com