精英家教網 > 初中數學 > 題目詳情
23、關于“三角形內角和等于180°”性質的說理,小虎找到了一種“創(chuàng)新”說理方法,方法如下:如圖(1),已知△ABC,說明:∠A+∠B+∠C=180°.小馬的說法:如圖(2),延長BC到點D,則∠ACD=∠A+∠B(三角形的一個外角等于和它不相鄰的兩個內角的和).∵∠ACD+∠ACB=180°(平角的定義),∴∠A+∠B+∠ACB=180°認為他的說明對嗎?說說你的看法.請給出一種你認為正確的說明.
分析:我認為小虎和小馬的說明都不正確,如圖(1),過A點做EF∥BC,通過平行線的性質,推出∠BAC+∠B+∠C=∠BAE+∠BAC+∠CAF=180°.
解答:已知:△ABC,
求證:∠A+∠B+∠C=180°.
證明:過點A作EF∥BC,
∴∠EAB=∠B,∠FAC=∠C,
∵∠EAB+∠BAC+∠FAC=180°,
∴∠B+∠C+∠BAC=180°,
∴三角形的內角和等于180°.
點評:本題主要考查三角形的內角和定理,平行線的性質,關鍵在于做出輔助線,熟練運用平行線的性質.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

5、數學大師陳省身于2004年12月3日在天津逝世,陳省身教授在微分幾何等領域做出了杰出的貢獻,是獲得沃爾夫獎的惟一華人,他曾經指出,平面幾何中有兩個重要定理,一個是勾股定理,另一個是三角形內角和定理,后者表明平面三角形可以千變萬化,但是三個內角的和是不變量,下列幾個關于不變量的敘述:
(1)邊長確定的平行四邊形ABCD,當A變化時,其任意一組對角之和是不變的;
(2)當多邊形的邊數不斷增加時,它的外角和不變;
(3)當△ABC繞頂點A旋轉時,△ABC各內角的大小不變;
(4)在放大鏡下觀察,含角α的圖形放大時,角α的大小不變;
(5)當圓的半徑變化時,圓的周長與半徑的比值不變;
(6)當圓的半徑變化時,圓的周長與面積的比值不變.
其中錯誤的敘述有( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

以下命題中正確的是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:單選題

數學大師陳省身于2004年12月3日在天津逝世,陳省身教授在微分幾何等領域做出了杰出的貢獻,是獲得沃爾夫獎的惟一華人,他曾經指出,平面幾何中有兩個重要定理,一個是勾股定理,另一個是三角形內角和定理,后者表明平面三角形可以千變萬化,但是三個內角的和是不變量,下列幾個關于不變量的敘述:
(1)邊長確定的平行四邊形ABCD,當A變化時,其任意一組對角之和是不變的;
(2)當多邊形的邊數不斷增加時,它的外角和不變;
(3)當△ABC繞頂點A旋轉時,△ABC各內角的大小不變;
(4)在放大鏡下觀察,含角α的圖形放大時,角α的大小不變;
(5)當圓的半徑變化時,圓的周長與半徑的比值不變;
(6)當圓的半徑變化時,圓的周長與面積的比值不變.
其中錯誤的敘述有


  1. A.
    2個
  2. B.
    3個
  3. C.
    4個
  4. D.
    5個

查看答案和解析>>

同步練習冊答案