【題目】如圖是拋物線y=ax2+bx+c(a≠0)的圖象的一部分,拋物線的頂點(diǎn)坐標(biāo)是A(1,4),與x軸的一個(gè)交點(diǎn)是B(3,0),下列結(jié)論:①abc>0;②2a+b=0;③方程ax2+bx+c=4有兩個(gè)相等的實(shí)數(shù)根;④拋物線與x軸的另一個(gè)交點(diǎn)是(﹣2.0);⑤x(ax+b)≤a+b,其中正確結(jié)論的個(gè)數(shù)是( 。
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
【答案】B
【解析】
通過圖象得到、、符號和拋物線對稱軸,將方程轉(zhuǎn)化為函數(shù)圖象交點(diǎn)問題,利用拋物線頂點(diǎn)證明.
由圖象可知,拋物線開口向下,則,,
拋物線的頂點(diǎn)坐標(biāo)是,
拋物線對稱軸為直線,
,
,則①錯(cuò)誤,②正確;
方程的解,可以看做直線與拋物線的交點(diǎn)的橫坐標(biāo),
由圖象可知,直線經(jīng)過拋物線頂點(diǎn),則直線與拋物線有且只有一個(gè)交點(diǎn),
則方程有兩個(gè)相等的實(shí)數(shù)根,③正確;
由拋物線對稱性,拋物線與軸的另一個(gè)交點(diǎn)是,則④錯(cuò)誤;
不等式可以化為,
拋物線頂點(diǎn)為,
當(dāng)時(shí),,
故⑤正確.
故選:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)的部分圖象如圖,圖象過點(diǎn)(﹣1,0),對稱軸為直線,下列結(jié)論:①;②;③;④當(dāng)時(shí), 隨的增大而增大.其中正確的結(jié)論有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC=4,O為AC中點(diǎn),若點(diǎn)D在直線BC上運(yùn)動,連接OE,則在點(diǎn)D運(yùn)動過程中,線段OE的最小值是為( 。
A.B.C.1D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,BD是∠ABC的平分線,點(diǎn)O在AB上,⊙O經(jīng)過B,D兩點(diǎn),交BC于點(diǎn)E.
(1)求證:AC是⊙O的切線;
(2)若AB=6,sin∠BAC=,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】周日琪琪要騎車從家去書店買書,一出家門,遇到了鄰居亮亮,亮亮說:“今天有風(fēng),而且去時(shí)逆風(fēng),要吃虧了”,琪琪回答說:“去時(shí)逆風(fēng),回來時(shí)順風(fēng),和無風(fēng)往返一趟所用時(shí)間相同”.(順風(fēng)速度無風(fēng)時(shí)騎車速度風(fēng)速,逆風(fēng)速度無風(fēng)時(shí)騎車速度風(fēng)速)
(1)如果家到書店的路程是,無風(fēng)時(shí)琪琪騎自行車的速度是,他逆風(fēng)去書店所用時(shí)間是順風(fēng)回家所用時(shí)間的倍,求風(fēng)速是多少?
(2)如果設(shè)從家到書店的路程為千米,無風(fēng)時(shí)騎車速度為千米/時(shí),風(fēng)速為千米/時(shí),則有風(fēng)往返一趟的時(shí)間為___________,無風(fēng)往返一趟的時(shí)間為_______,請你通過計(jì)算說明琪琪和亮亮誰說得對.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,點(diǎn)P在AC上運(yùn)動,點(diǎn)D在AB上,PD始終保持與PA相等,BD的垂直平分線交BC于點(diǎn)E,交BD于點(diǎn)F,連接DE.
(1)判斷DE與DP的位置關(guān)系,并說明理由;
(2)若AC=6,BC=8,PA=2,求線段DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是胡老師帶領(lǐng)學(xué)生,探究SSA是否能判定兩個(gè)三角形全等的過程,請完成下列填空.
如圖:已知,在和中,________,(公共邊),,( ),,( ),則和滿足兩邊及一邊的對角分別相等,即滿足________________,很顯然:________,(填“全等于”或“不全等于”)下結(jié)論:SSA________(填“能”或“不能”)判定兩個(gè)三角形全等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC是等腰直角三角形,∠BAC=90°,BE是∠ABC的平分線,DE⊥BC,垂足為D.
(1)請你寫出圖中所有的等腰三角形;
(2)請你判斷AD與BE垂直嗎?并說明理由.
(3)如果BC=10,求AB+AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖a是一個(gè)長為2m,寬為2n的長方形,沿圖中虛線用剪刀平均分成四塊小長方形,然后按圖b的形狀,拼成一個(gè)正方形.
(1)圖b中的陰影部分面積為 ;
觀察圖b,請你寫出三個(gè)代數(shù)式,,mn之間的等量關(guān)系是 ;
(3)若x+y=﹣6,xy=2.75,利用提供的等量關(guān)系計(jì)算:x﹣y= ;
(4)實(shí)際上有許多代數(shù)恒等式可以用圖形的面積來表示,如圖C,它表示了2+3mn+=(m+n)(2m+n),試畫出一個(gè)幾何圖形的面積是+4ab+3,并能利用這個(gè)圖形將+4ab+3進(jìn)行因式分解.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com