【題目】已知(m﹣n)2=34,(m+n)2=4 000,則m2+n2的值為(
A.2 016
B.2 017
C.2 018
D.4 034

【答案】B
【解析】解:∵(m﹣n)2=m2﹣2mn+n2=34①,(m+n)2=m2+2mn+n2=4000②, ∴①+②得:2(m2+n2)=4034,
則m2+n2=2017,
故選B
【考點(diǎn)精析】利用完全平方公式對題目進(jìn)行判斷即可得到答案,需要熟知首平方又末平方,二倍首末在中央.和的平方加再加,先減后加差平方.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正五邊形的外角和為(

A. 180°B. 540°C. 360°D. 72°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,點(diǎn)C為⊙O上一點(diǎn),若∠BAC=∠CAM,過點(diǎn)C作直線l垂直于射線AM,垂足為點(diǎn)D.

(1)試判斷CD與⊙O的位置關(guān)系,并說明理由;

(2)若直線l與AB的延長線相交于點(diǎn)E,⊙O的半徑為3,并且∠CAB=30°.求圖中所示陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)A(﹣4,﹣3)在( )

A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在Rt△ABC中,∠ABC=90°,∠C=60°,現(xiàn)將一個(gè)足夠大的直角三角形的頂點(diǎn)P放在斜邊AC上.

(1)設(shè)三角板的兩直角邊分別交邊AB,BC于點(diǎn)M,N.

①當(dāng)點(diǎn)P是AC的中點(diǎn)時(shí),分別作PE⊥AB于點(diǎn)E,PF⊥BC于點(diǎn)F,得到圖1,寫出圖中的一對全等三角形;

②在①的條件下,寫出與△PEM相似的三角形,并直接寫出PN與PM的數(shù)量關(guān)系.

(2)移動(dòng)點(diǎn)P,使AP=2CP,將三角板繞點(diǎn)P旋轉(zhuǎn),設(shè)旋轉(zhuǎn)過程中三角板的兩直角邊分別交邊AB,BC于點(diǎn)M,N(PM不與邊AB垂直,PN不與邊BC垂直);或者三角板的兩直角邊分別交邊AB,BC的延長線于點(diǎn)M,N.

①請?jiān)趥溆脠D中畫出圖形,判斷PM與PN的數(shù)量關(guān)系,并選擇其中一種圖形證明你的結(jié)論;

②在①的條件下,當(dāng)△PCN是等腰三角形時(shí),若BC=3cm,則線段BN的長是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分解因式:x2y﹣2xy2+y3=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下面推理過程:

已知:如圖,已知∠1 =∠2,∠B =∠C,

求證:AB∥CD.

證明∵∠1 =∠2(已知),

且∠1 =∠CGD( ),

∴∠2 =∠CGD(等量代換).

∴CE∥BF( ).

∴∠ =∠C( ).

又∵∠B =∠C(已知),

∴∠ =∠B(等量代換).

∴AB∥CD( ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從分別標(biāo)有1,2,3,…,5050張卡片中抽出2的倍數(shù)的卡片的可能性________抽出4的倍數(shù)的卡片的可能性(大于”“小于等于”).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙、丁四位同學(xué)五次100米跑成績統(tǒng)計(jì)如下表.如果從這四位同學(xué)中,選出一位成績較好且狀態(tài)穩(wěn)定的同學(xué)參加縣運(yùn)動(dòng)會,那么應(yīng)選( )

平均數(shù)(秒)

16

15

15

16

方差

30

30

35

42

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案