【題目】霧霾天氣嚴重影響市民的生活質(zhì)量。在今年寒假期間,某校九年級一班的綜合實踐小組學生對“霧霾天氣的主要成因”隨機調(diào)查了所在城市部分市民,并對調(diào)查結(jié)果進行了整理,繪制了下圖所示的不完整的統(tǒng)計圖表:
組別 | 霧霾天氣的主要成因 | 百分比 |
A | 工業(yè)污染 | 45% |
B | 汽車尾氣排放 | |
C | 爐煙氣排放 | 15% |
D | 其他(濫砍濫伐等) |
請根據(jù)統(tǒng)計圖表回答下列問題:
(1)本次被調(diào)查的市民共有多少人?并求和的值;
(2)請補全條形統(tǒng)計圖,并計算扇形統(tǒng)計圖中扇形區(qū)域所對應的圓心角的度數(shù);
(3)若該市有100萬人口,請估計市民認為“工業(yè)污染和汽車尾氣排放是霧霾天氣主要成因”的人數(shù).
【答案】(1)200人,;(2)見解析,;(3)75萬人.
【解析】
(1)用A類的人數(shù)除以所占的百分比求出被調(diào)查的市民數(shù),再用B類的人數(shù)除以總?cè)藬?shù)得出B類所占的百分比m,繼而求出n的值即可;
(2)求出C、D兩組人數(shù),從而可補全條形統(tǒng)計圖,用360度乘以n即可得扇形區(qū)域所對應的圓心角的度數(shù);
(3)用該市的總?cè)藬?shù)乘以持有A、B兩類所占的百分比的和即可.
(1)本次被調(diào)查的市民共有:(人),
∴,;
(2)組的人數(shù)是(人)、組的人數(shù)是(人),
∴;
補全的條形統(tǒng)計圖如下圖所示:
扇形區(qū)域所對應的圓心角的度數(shù)為:
;
(3)(萬),
∴若該市有100萬人口,市民認為“工業(yè)污染和汽車尾氣排放是霧霾天氣主要成因”的人數(shù)約為75萬人.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有長為48米的籬笆,一面利用墻(墻的最大可用長度25米),圍成中間隔有一道籬笆的長方形花圃ABCD.
(1)當AB的長是多少米時,圍成長方形花圃ABCD的面積為180?
(2)能圍成總面積為240的長方形花圃嗎?說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將□ABCD的邊DC延長至點E,使得CE=DC,連結(jié)AE,AC,BE,且AE交BC于點F.
(1)求證:AE與BC互相平分;
(2)若∠AFC=2∠D,AD=10.
①求證:四邊形ABEC是矩形;
②連結(jié)FD,則線段FD的長度的取值范圍為____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,直線的表達式為,點A,B的坐標分別為
(1,0),(0,2),直線AB與直線相交于點P.
(1)求直線AB的表達式;
(2)求點P的坐標;
(3)若直線上存在一點C,使得△APC的面積是△APO的面積的2倍,直接寫出點C的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知△ABC的三個頂點的坐標分別為A(﹣3,5),B(﹣2,1),C(﹣1,3).
(1)若△ABC和△A1B1C1關(guān)于原點O成中心對稱圖形,畫出圖形并寫出△A1B1C1的各頂點的坐標;
(2)將△ABC繞著點C按順時針方向旋轉(zhuǎn)90°得到△A2B2C2,畫出圖形,求出線段CA掃過的部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲乙兩車分別從A. B兩地相向而行,甲車出發(fā)1小時后乙車出發(fā),并以各自速度勻速行駛,兩車相遇后依然按照原速度原方向各自行駛,如圖所示是甲乙兩車之間的距離S(千米)與甲車出發(fā)時間t(小時)之間的函數(shù)圖象,其中D點表示甲車到達B地,停止行駛。
(1)A、B兩地的距離___千米;乙車速度是___;a=___.
(2)乙出發(fā)多長時間后兩車相距330千米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB∥CD,F(xiàn)為CD上一點,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度數(shù)為整數(shù),則∠C的度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,在△ABC中,AE平分∠CAB交BC于點E,AC=6,CE=3,,BE=5,點F是邊AB上的動點(點F與點A,B不重合),聯(lián)結(jié)EF,設(shè)BF=x,EF=y.
(1)求AB的長;
(2)求y關(guān)于x的函數(shù)解析式,并寫出函數(shù)的定義域;
(3)當△AEF為等腰三角形時,直接寫出BF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】直線與x軸交于點A,與y軸交于點B,菱形ABCD如圖放置在平面直角坐標系中,其中點D在x軸負半軸上,直線y=x+m經(jīng)過點C,交x軸于點E.
①請直接寫出點C、點D的坐標,并求出m的值;
②點P(0,t)是線段OB上的一個動點(點P不與O、B重合),經(jīng)過點P且平行于x軸的直線交AB于M、交CE于N.設(shè)線段MN的長度為d,求d與t之間的函數(shù)關(guān)系式(不要求寫自變量的取值范圍);
③點P(0,t)是y軸正半軸上的一個動點,為何值時點P、C、D恰好能組成一個等腰三角形?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com