【題目】某校準(zhǔn)備開(kāi)設(shè)特色活動(dòng)課,各科目的計(jì)劃招生人數(shù)和報(bào)名人數(shù),列前三位的如下表所示:

科目

小制作

足球

英語(yǔ)口語(yǔ)

計(jì)劃人數(shù)

100

90

60

科目

小制作

英語(yǔ)口語(yǔ)

中國(guó)象棋

報(bào)名人數(shù)

280

250

200

若計(jì)劃招生人數(shù)和報(bào)名人數(shù)的比值越大,表示學(xué)校開(kāi)設(shè)該科目相對(duì)學(xué)生需要的滿足指數(shù)就越高.那么根據(jù)以上數(shù)據(jù),滿足指數(shù)最高的科目是(  )

A. 足球B. 小制作C. 英語(yǔ)口語(yǔ)D. 中國(guó)象棋

【答案】A

【解析】

分別求出計(jì)劃招生人數(shù)和報(bào)名人數(shù)的比值,即可求出滿足指數(shù)最高的科目.

求出各科目計(jì)劃都生人數(shù)和報(bào)名人數(shù)的比值,小制作:;英語(yǔ)口語(yǔ):;足球:計(jì)劃招生人,報(bào)名數(shù)不在前三名,即少于人,所以比值大于,即大于;中國(guó)象棋:報(bào)名人,計(jì)劃數(shù)不在前三名,即少于人,所以比值小于,即小于.足球科目的滿足指數(shù)最高(即比值最大)

故選A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司用6000元購(gòu)進(jìn)AB兩種電話機(jī)25臺(tái),購(gòu)買(mǎi)A種電話機(jī)與購(gòu)買(mǎi)B種電話機(jī)的費(fèi)用相等.已知A種電話機(jī)的單價(jià)是B種電話機(jī)單價(jià)的1.5倍.

1)求AB兩種電話機(jī)的單價(jià)各是多少?

2)若計(jì)劃用不超過(guò)8000元的資金再次購(gòu)進(jìn)AB兩種話機(jī)共30臺(tái),已知A,B兩種電話機(jī)的進(jìn)價(jià)不變,求最多能購(gòu)進(jìn)多少臺(tái)A種電話機(jī)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)就戲曲進(jìn)校園活動(dòng)的喜愛(ài)情況進(jìn)行了隨機(jī)調(diào)查,對(duì)收集的信息進(jìn)行了統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)統(tǒng)計(jì)圖所提供的信息解答下列問(wèn)題:(圖中表示很喜歡,表示喜歡,表示一般,表示不喜歡

1)被調(diào)查的總?cè)藬?shù)是_________,扇形統(tǒng)計(jì)圖中部分所對(duì)應(yīng)的扇形圓心角的度數(shù)為_________;

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)在抽取的5人中,剛好有甲、乙、丙3個(gè)女生和丁、戊2個(gè)男生,從中隨機(jī)抽取兩個(gè)同學(xué)擔(dān)任兩角色,用畫(huà)樹(shù)狀圖或列表法求出抽到的兩個(gè)學(xué)生性別不相同的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,分別平分,交于點(diǎn),線段相交于點(diǎn)M.

1)求證:;

2)若,則的值是__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)南宋著名數(shù)學(xué)家秦九韶的著作《數(shù)書(shū)九章》里記載有這樣一道題:問(wèn)有沙田一塊,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知為田幾何?這道題講的是:有一塊三角形沙田,三條邊長(zhǎng)分別為5里,12里,13里,問(wèn)這塊沙田面積有多大?題中是我國(guó)市制長(zhǎng)度單位,1=500米,則該沙田的面積為( 。

A. 7.5平方千米 B. 15平方千米 C. 75平方千米 D. 750平方千米

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABCD中,ECD邊上一點(diǎn),

(1)將ADE繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn),使AD、AB重合,得到ABF,如圖1所示.觀察可知:與DE相等的線段是   ,AFB=   

(2)如圖2,正方形ABCD中,P、Q分別是BC、CD邊上的點(diǎn),且∠PAQ=45°,試通過(guò)旋轉(zhuǎn)的方式說(shuō)明:DQ+BP=PQ;

(3)在(2)題中,連接BD分別交AP、AQM、N,你還能用旋轉(zhuǎn)的思想說(shuō)明BM2+DN2=MN2嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法中正確的是( 。

A. 一個(gè)游戲的中獎(jiǎng)概率是10%,則做10次這樣的游戲一定會(huì)中獎(jiǎng)

B. 為了解全國(guó)中學(xué)生的心理健康情況,應(yīng)該采用普查的方式

C. 若甲組數(shù)據(jù)的方差S20.01,乙組數(shù)據(jù)的方差S20.1,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定

D. 一組數(shù)據(jù)8,37,8,8,910的眾數(shù)和中位數(shù)都是8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)O是正方形ABCD兩條對(duì)角線的交點(diǎn),分別延長(zhǎng)CO到點(diǎn)G,OC到點(diǎn)E,使OG=2OD、OE=2OC,然后以OG、OE為鄰邊作正方形OEFG

1)如圖1,若正方形OEFG的對(duì)角線交點(diǎn)為M,求證:四邊形CDME是平行四邊形.

2)正方形ABCD固定,將正方形OEFG繞點(diǎn)O逆時(shí)針旋轉(zhuǎn),得到正方形OE′F′G′,如圖2,連接AG′,DE′,求證:AG′=DE′,AG′DE′;

3)在(2)的條件下,正方形OE′F′G′的邊OG′與正方形ABCD的邊相交于點(diǎn)N,如圖3,設(shè)旋轉(zhuǎn)角為αα180°),若AON是等腰三角形,請(qǐng)直接寫(xiě)出α的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】老師布置了一個(gè)作業(yè),如下:已知:如圖1的對(duì)角線的垂直平分線于點(diǎn),交于點(diǎn),交于點(diǎn).求證:四邊形是菱形.

某同學(xué)寫(xiě)出了如圖2所示的證明過(guò)程,老師說(shuō)該同學(xué)的作業(yè)是錯(cuò)誤的.請(qǐng)你解答下列問(wèn)題:

1)能找出該同學(xué)錯(cuò)誤的原因嗎?請(qǐng)你指出來(lái);

2)請(qǐng)你給出本題的正確證明過(guò)程.

查看答案和解析>>

同步練習(xí)冊(cè)答案