【題目】將正方形ABCD繞點A按逆時針方向旋轉30°,得正方形AB1C1D1,B1C1交CD于點E,AB=,則四邊形AB1ED的內切圓半徑為_________
【答案】
【解析】
首先作∠DAF與∠AB1C1的角平分線,交于點O,則O為該圓的圓心,過O作OF⊥AB1交AB1于點F,則OF即為所求,根據(jù)角平分線的性質可得∠OAF=30°,∠AB1O=45°,根據(jù)等腰三角形的性質以及含30°角的直角三角形性質可得B1F=x,AF=-x,接下來在Rt△OFA,利用勾股定理即可得到關于x的方程,解方程即可求解.
作∠DAF與∠AB1C1的角平分線,交于點O,過O作OF⊥AB1交AB1于點F,
AB=AB1=,∠BAB1=30°,
∵四邊形AB1C1D1是正方形,∠DAF與∠AB1C1的角平分線交于點O,∠BAB1=30°
∴∠OAF=30°,∠AB1O=45°
∵OF⊥AB1
∴B1F=OF=OA
設B1F=x,則AF=-x
∴(-x)2+x2=(2x)2
解得x=或x=(舍去)
即四邊AB1ED的內切圓的半徑為.
故答案為:.
科目:初中數(shù)學 來源: 題型:
【題目】鳳城中學九年級(3)班的班主任讓同學們?yōu)榘鄷顒釉O計一個摸球方案,這些球除顏色外都相同,擬使中獎概率為50%.
(1)小明的設計方案:在一個不透明的盒子中,放入黃、白兩種顏色的球共6個,攪勻后從中任意摸出1個球,摸到黃球則表示中獎,否則不中獎.如果小明的設計符合老師要求,則盒子中黃球應有 個,白球應有 個;
(2)小兵的設計方案:在一個不透明的盒子中,放入2個黃球和1個白球,攪勻后從中任意摸出2個球,摸到的2個球都是黃球則表示中獎,否則不中獎,該設計方案是否符合老師的要求?試說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù) y=﹣x+4 的圖象與反比例 y=(k 為常數(shù), 且 k≠0)的圖象交于 A(1,a)、B(b,1)兩點.
(1)求點 A、B 的坐標及反比例函數(shù)的表達式;
(2)在 x 軸上找一點,使 PA+PB 的值最小,求滿足條件的點 P 的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示的是二次函數(shù)(為常數(shù),且)的圖象,其對稱軸為直線,且經(jīng)過點(0,1),則下列結論錯誤的是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,P是邊長為1的正方形ABCD的對角線AC上一動點(不與A、C兩點重合),連接BP,過點P作PE⊥PB交直線CD于點E,連接BE,MN//BC分別交AB、DC于點M、N.設.
(1)當點E在CD邊上時,線段PE于線段PB有怎樣的數(shù)量關系?試證明你的結論.
(2)設以點B,C,P,E為頂點的四邊形的面積為y,試確定y與x之間的函數(shù)關系式,并求出自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,⊙O是△ABC的內切圓,它與AB,BC,CA分別相切于點D,E,F.
(1)求證:BE=CE;
(2)若∠A=90°,AB=AC=2,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=k1x+b(k1≠0)與雙曲線(k2≠0)相交于A(1,2)、B(m,﹣1)兩點.
(1)求直線和雙曲線的解析式;
(2)若A1(x1,y1),A2(x2,y2),A3(x3,y3)為雙曲線上的三點,且x1<0<x2<x3,請直接寫出y1,y2,y3的大小關系式;
(3)觀察圖象,請直接寫出不等式k1x+b<的解集.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個長為4cm,寬為3cm的長方形木板在桌面上做無滑動的翻滾(順時針方向),木板點A位置的變化為A→Al→A2,其中第二次翻滾被面上一小木塊擋住,使木板與桌面成30°的角,則點A滾到A2位置時共走過的路徑長為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校為了提高學生學科能力,決定開設以下校本課程:A.文學院,B.小小數(shù)學家,C.小小外交家,D.未來科學家,為了解學生最喜歡哪一項校本課程,隨機抽取了部分學生進行調查,并將調查結果繪制成了兩幅不完整的統(tǒng)計圖,請回答下列問題:
(1)這次被調查的學生共有 人;
(2)請你將條形統(tǒng)計圖(2)補充完整;
(3)在平時的小小外交家的課堂學習中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學中任選兩名參加全國英語口語大賽,求恰好同時選中甲、乙兩位同學的概率(用樹狀圖或列表法解答).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com