【題目】已知,如圖,△ABC是等邊三角形,AE=CD,BQ⊥AD于Q,BE交AD于點P,下列說法:①∠APE=∠C,②AQ=BQ,③BP=2PQ,④AE+BD=AB,其中正確的個數(shù)有( )個。
A. 4B. 3C. 2D. 1
【答案】B
【解析】
根據(jù)等邊三角形的性質(zhì)可得AB=AC,∠BAE=∠C=60°,利用“邊角邊”證明△ABE和△CAD全等,然后分析判斷各選項即可.
證明:∵△ABC是等邊三角形,
∴AB=AC,∠BAE=∠C=60°,
在△ABE和△CAD中,
,
∴△ABE≌△CAD(SAS),
∴∠1=∠2,
∴∠BPQ=∠2+∠3=∠1+∠3=∠BAC=60°,
∴∠APE=∠C=60°,故①正確
∵BQ⊥AD,
∴∠PBQ=90°∠BPQ=90°60°=30°,
∴BP=2PQ.故③正確,
∵AC=BC.AE=DC,
∴BD=CE,
∴AE+BD=AE+EC=AC=AB,故④正確,
無法判斷BQ=AQ,故②錯誤,
故選B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將正面分別標(biāo)有數(shù)字2,3,4的三張形狀、大小一樣的卡片洗勻后,背面朝上放在桌面上.
(1)隨機地抽取一張卡片,求抽到奇數(shù)的概率;
(2)隨機地抽取一張卡片,將卡片上標(biāo)有的數(shù)字作為十位上的數(shù)字(不放回),再隨機地抽取一張卡片,將卡片上標(biāo)有的數(shù)字作為個位上的數(shù)字,組成的兩位數(shù)恰好是“23”的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知Rt△ABC中,∠ACB=90°,CD是斜邊AB上的中線,過點A作AE⊥CD,AE分別與CD、CB相交于點H、E,AH=2CH.
(1)求sinB的值;
(2)如果CD=,求BE的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:直線AB與直線CD交于點O,過點O作OE⊥AB.
(1)如圖1,∠BOC=2∠AOC,求∠COE的度數(shù);
(2)如圖2.在(1)的條件下,過點O作OF⊥CD,經(jīng)過點O畫直線MN,滿足射線OM平分∠BOD,在不添加任何輔助線的情況下,請直接寫出與2∠EOF度數(shù)相等的角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABC 的三個頂點的位置如圖所示,點 A′的坐標(biāo)是(-2,2),現(xiàn)將△ABC 平移,使點 A 變換為點 A′,點 B′、C′分別是 B、C 的對應(yīng)點.
(1) 請畫出平移后的△A′B′C′(不寫畫法),并直接寫出點B′、C′的坐標(biāo):B′ 、C′ ;
(2) 若△ABC 內(nèi)部一點 P 的坐標(biāo)為(,),則點 P 的對應(yīng)點 P′的坐標(biāo)是 ;
(3) 連接 A′B,CC′,并求四邊形 A′BCC′的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,這個圖案是3世紀(jì)我國漢代數(shù)學(xué)家趙爽在注解《周髀算經(jīng)》時給出的,人們稱它為“趙爽弦圖”.已知AE=3,BE=2,若向正方形ABCD內(nèi)隨意投擲飛鏢(每次均落在正方形ABCD內(nèi),且落在正方形ABCD內(nèi)任何一點的機會均等),則恰好落在正方形EFGH內(nèi)的概率為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com