【題目】如圖,在平面直角坐標(biāo)系中,

1)作出關(guān)于軸對稱的,并寫出三個頂點的坐標(biāo);

2)請計算的面積;

【答案】1)見解析; ;(25

【解析】

1)分別找到點A、BC的關(guān)于y軸的對稱點A1、B1、C1,連接A1B1,A1C1,B1C1,即可畫出,然后根據(jù)關(guān)于y軸對稱的兩點坐標(biāo)關(guān)系:橫坐標(biāo)互為相反數(shù),縱坐標(biāo)相等,即可得出結(jié)論;

2)用一個長方形將△ABC框住,然后用長方形的面積減去三個直角三角形的面積即可得出結(jié)論.

1)根據(jù)題意,分別找到點A、B、C的關(guān)于y軸的對稱點A1、B1C1,連接A1B1,A1C1B1C1,如圖所示:即為所求.

∵點A的坐標(biāo)為(0,-2),點B的坐標(biāo)為(2,-4),點C的坐標(biāo)為(4,-1

;

2)用一個長方形將框住,如上圖所示,

的面積為: ;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,點Ax軸外的一點,若平面內(nèi)的點B滿足:線段AB的長度與點Ax軸的距離相等,則稱點B是點A的“等距點”.

(1)若點A的坐標(biāo)為(0,2),點(2,2),(1,),,1)中,點A的“等距點”是_______________;

(2)若點M(1,2)和點N(1,8)是點A的兩個“等距點”,求點A的坐標(biāo);

(3)記函數(shù))的圖象為,的半徑為2,圓心坐標(biāo)為.若在上存在點M,上存在點N,滿足點N是點M的“等距點”,直接寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知拋物線y= x軸交于點A2,0)和點B,與y軸交于點C0,3),經(jīng)過點A的射線AMy軸相交于點E,與拋物線的另一個交點為F,且.

1)求這條拋物線的表達式,并寫出它的對稱軸;

2)求∠FAB的余切值;

3)點D是點C關(guān)于拋物線對稱軸的對稱點,點Py軸上一點,且∠AFP=DAB,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀探索題:

(1)如圖1,OP是∠MON的平分線,以O為圓心任意長為半徑作弧,分別交射線ON、OMC、B兩點,在射線OP上任取一點A(點O除外),連接AB、AC.求證:△AOB≌△AOC.

(2)請你參考以上方法,解答下列問題:

如圖2,在 Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB,試判斷BCAC、AD之間的數(shù)量關(guān)系并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:正方形ABCD,點ECB的延長線上,連接AE、DE,DE與邊AB交于點F,F(xiàn)GBEAE于點G.

(1)求證:GF=BF;

(2)若EB=1,BC=4,求AG的長;

(3)在BC邊上取點M,使得BM=BE,連接AMDE于點O.求證:FOED=ODEF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠AOB30°,OP平分∠AOBPCOBOAC,PDOBD.如果PC8,那么PD等于____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,∠ACB90°,ACBC,直線MN經(jīng)過點C,且ADMN于點D,BEMN于點E

1)當(dāng)直線MN繞點C旋轉(zhuǎn)到圖(1)的位置時,求證:DEADBE;

2)當(dāng)直線MN繞點C旋轉(zhuǎn)到圖(2)的位置時,求證:DEADBE

3)當(dāng)直線MN繞點C旋轉(zhuǎn)到圖(3)的位置時,試問:DEAD,BE有怎樣的等量關(guān)系?請寫出這個等量關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,BE平分∠ABCAC于點E,作EDEBAB于點D,OBED的外接圓.

(1)求證:AC是⊙O的切線;

(2)已知⊙O的半徑為2.5,BE=4,求BC,AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,EAD邊的中點,,垂足為點F,連接DF,分析下列四個結(jié)論:;;;其中正確的結(jié)論有______

查看答案和解析>>

同步練習(xí)冊答案