【題目】古希臘數(shù)學(xué)家把1,3,6,10,15,21叫做三角數(shù),它有一定的規(guī)律性,若把第一個三角數(shù)記為a1,第二個三角數(shù)記為a2,, n個三角數(shù)記為an,計(jì)算a1+a2,a2+a3,a3+a4,,由此推算a199+a200的值為(

A. 20000 B. 40000 C. 39701 D. 19701

【答案】B

【解析】

首先計(jì)算a1+a2,a2+a3,a3+a4的值,然后總結(jié)規(guī)律,根據(jù)規(guī)律可以得出結(jié)論.

∵a1+a2=4=22;a2+a3=3+6=9=32;a2+a3=6+10=16=42;…
∴an+an+1=(n+1)2;
∴a199+a200=40000.
故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:數(shù)軸上A、B兩點(diǎn)表示的有理數(shù)分別為a、b,且(a﹣12+|b+2|=0

1)求(a+b2017的值.

2)數(shù)軸上的點(diǎn)CA、B兩點(diǎn)的距離的和為7,求點(diǎn)C在數(shù)軸上表示的數(shù)c的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用兩個全等的等邊三角形,可以拼成下列哪種圖形( )
A.矩形
B.菱形
C.正方形
D.等腰梯形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】能判定一個四邊形是菱形的條件是( )
A.對角線相等且互相垂直
B.對角線相等且互相平分
C.對角線互相垂直
D.對角線互相垂直平分

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2016山東省泰安市第26題)某學(xué)校是乒乓球體育傳統(tǒng)項(xiàng)目學(xué)校,為進(jìn)一步推動該項(xiàng)目的開展,學(xué)校準(zhǔn)備到體育用品店購買直拍球拍和橫拍球拍若干副,并且每買一副球拍必須要買10個乒乓球,乒乓球的單價(jià)為2元/個,若購買20副直拍球拍和15副橫拍球拍花費(fèi)9000元;購買10副橫拍球拍比購買5副直拍球拍多花費(fèi)1600元.

(1)求兩種球拍每副各多少元?

(2)若學(xué)校購買兩種球拍共40副,且直拍球拍的數(shù)量不多于橫拍球拍數(shù)量的3倍,請你給出一種費(fèi)用最少的方案,并求出該方案所需費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠ACB=90°,AC=BC,BECEE,ADCED.

(1)求證:ADC≌△CEB.

(2)AD=5cm,DE=3cm,求BE的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一元二次方程x2+x=0的根的是( 。
A.x1=0,x2=1
B.x1=0,x2=﹣1
C.x1=1,x2=﹣1
D.x1=x2=﹣1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某種商品原價(jià)300元,連續(xù)兩次降價(jià)x%后售價(jià)為192元,則x=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖1:在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F(xiàn)分別是BC,CD上的點(diǎn).且∠EAF=60°.探究圖中線段BE,EF,F(xiàn)D之間的數(shù)量關(guān)系.

小王同學(xué)探究此問題的方法是,延長FD到點(diǎn)G.使DG=BE.連結(jié)AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得出結(jié)論,他的結(jié)論應(yīng)是 ;

(2)如圖2,若在四邊形ABCD中,AB=AD,∠B+∠D=180°.E,F(xiàn)分別是BC,CD上的點(diǎn),且∠EAF=∠BAD上述結(jié)論是否仍然成立,并說明理由;

(3)如圖3,在某次軍事演習(xí)中,艦艇甲在指揮中心(O處)北偏西30°的A處,艦艇乙在指揮中心南偏東70°的B處,并且兩艦艇到指揮中心的距離相等,接到行動指令后,艦艇甲向正東方向以60海里/小時(shí)的速度前進(jìn),艦艇乙沿北偏東50°的方向以80海里/小時(shí)的速度前進(jìn)1.5小時(shí)后,指揮中心觀測到甲、乙兩艦艇分別到達(dá)E,F(xiàn)處,且兩艦艇之間的夾角為70°,試求此時(shí)兩艦艇之間的距離.

查看答案和解析>>

同步練習(xí)冊答案