【題目】如圖,在菱形ABCD中,點M、N在直線BD上,點M在N點左側(cè),AM∥CN.
(1)如圖1,求證:BM=DN;
(2)如圖2,當∠ABC=90°,點M,N在線段BD上時,求證:BM+BN= AB;
(3)如圖3,當∠ABC=60°,點M在線段DB的延長線上時,直接寫出BM,BN,AB三者的數(shù)量關(guān)系.
【答案】
(1)
解:∵四邊形ABCD為菱形,
∴AB=CD,AB∥CD.
∴∠ABM=∠CDN.
∵AM∥CN,
∴∠AMN=∠MNC.
∴∠AMB=∠CND.
在△AMB和△CND中,
∴△AMB≌△CND.
∴MB=DN
(2)
解:由(1)得BM=DN.
∴BN+BM=DB.
當∠ABC=90°時,由勾股定理得;BD= = = AB.
∴MB+BN= AB
(3)
解:NB﹣BM= AB.
如圖1所示:過點A作AE⊥MN,垂足為E.
由(1)得BM=DN.
又∵BD=BN﹣DN,
∴BD=BN﹣BM.
當∠ABC=60°時,∠ABE=30°,
又∵∠AEB=90°,
∴AE= AB.
∴在Rt△ABE中,BE= = = AB.
∵AB=AD,AE⊥BD,
∴BE=ED.
∴BD= AB.
∴BN﹣BM= AB.
由勾股定理得;BD= = = AB.
∴MB+BN= AB
【解析】(1)由菱形的性質(zhì)可知AB=CD,AB∥CD,然后由平行線的性質(zhì)和補角的性質(zhì)∠ABM=∠CDN,∠AMB=∠CND,接下來依據(jù)AAS證明△AMB≌△CND,由全等三角形的性質(zhì)可得到MB=DN;(2)由(1)得BM=DN,故此可得到BN+BM=DB,當∠ABC=90°時,在Rt△ABD中,由勾股定理可求得BD與AB的關(guān)系,從而得到BM+BN= AB;(3)過點A作AE⊥MN,垂足為E.由BM=DN可證明BD=BN﹣BM,當∠ABC=60°時,∠ABE=30°在Rt△ABE中,依據(jù)勾股定理可求得BE與AB的關(guān)系,然后再依據(jù)等腰三角形三線合一的性質(zhì)可得到AB與BD的關(guān)系,于是得到BM,BN,AB三者的數(shù)量關(guān)系.
【考點精析】本題主要考查了菱形的性質(zhì)的相關(guān)知識點,需要掌握菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】2016年里約奧運會后,同學們參與體育鍛煉的熱情高漲,為了解他們平均每周的鍛煉時間,小明同學在校內(nèi)隨機調(diào)查了50名同學,統(tǒng)計并制作了如下頻數(shù)分布表和扇形統(tǒng)計圖。根據(jù)上述信息解答下列問題:
(1)m=____,n=____;
(2)在扇形統(tǒng)計圖中,D組所占圓心角的度數(shù)是____;
(3)全校共有3000名學生,該校平均每周體育鍛煉時間不少于6小時的學生約有多少名?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,O是AC與BD的交點,過O點的直線EF與AB,CD的延長線分別交于E,F(xiàn).
(1)求證:△BOE≌△DOF;
(2)當EF與AC滿足什么關(guān)系時,以A,E,C,F(xiàn)為頂點的四邊形是菱形?證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知正方形ABCD,點E,F分別在射線AB,射線BC上,AE=BF,DE與AF交于點O.
(1)如圖1,當點E,F分別在線段AB,BC上時,則線段DE與AF的數(shù)量關(guān)系是 ,位置關(guān)系是 .
(2)如圖2,當點E在線段AB延長線上時,將線段AE沿AF進行平移至FG,連接DG.
①依題意將圖2補全;
②小亮通過觀察、實驗提出猜想:在點E運動的過程中,始終有.
小亮把這個猜想與同學們進行交流,通過討論,形成了證明該猜想的幾種想法:
想法1:連接EG,要證明,只需證四邊形FAEG是平行四邊形及△DGE是等腰直角三角形.
想法2:延長AD,GF交于點H,要證明,只需證△DGH是直角三角形.
圖1 圖2
請你參考上面的想法,幫助小亮證明.(一種方法即可)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com