【題目】為響應環(huán)保組織提出的“低碳生活”的號召,李明決定不開汽車而改騎自行車上班.有一天,李明騎自行車從家里到工廠上班,途中因自行車發(fā)生故障,修車耽誤了一段時間,車修好后繼續(xù)騎行,直至到達工廠(假設在騎自行車過程中勻速行駛).李明離家的距離(米)與離家時間(分鐘)的關系表示如下圖:

(1)李明從家出發(fā)到出現(xiàn)故障時的速度為 米/分鐘;

(2)李明修車用時 分鐘;

(3)求線段BC所對應的函數(shù)關系式(不要求寫出自變量的取值范圍).

【答案】(1)200(2) 5(3)y=200x-1000

【解析】試題分析:(1)由OA段,騎自行車勻速前進,可求出速度=路程/時間;

(2)由AB段,可看出修車時間;

(3)通過設出函數(shù)一般式y(tǒng)=kx+b,將(20,3000)(25,4000)代入即可求出.

試題解析:(1) 200 (2) 5

(3)設線段BC解析式為: 過點(25,4000)和(20,3000)

根據(jù)題意得:

計算得出:

∴解析式為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知am=5,an=2,則am+n的值等于( 。
A.25
B.10
C.8
D.7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若一個三角形三個內角度數(shù)的比為2︰7︰4,那么這個三角形是(  )
A.直角三角形
B.銳角三角形
C.鈍角三角形
D.等邊三角形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】每件a元的上衣先提價10%,再打九折以后出售的價格是 元/件;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,高速公路BC(公路視為直線)的最高限速為120,在該公路正上方離地面20的點A處設置了一個測速儀,已知在點A測得點B的俯角為45°,點C的俯角為30°,測速儀監(jiān)測到一輛汽車從點B勻速行駛到點C所用的時間是1.5,試通過計算,判決該汽車在這段限速路上是否超速.(參考數(shù)據(jù): ≈1.7)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角梯形ABCD中,AB∥DC,∠D=90o,AC⊥BC,AB=10,BC=6,F(xiàn)點以2的速度在線段AB上由A向B勻速運動,E點同時以1的速度在線段BC上由B向C勻速運動,設運動時間為秒(0<<5).

(1)求證:△ACD∽△BAC; (2)求DC的長;

(3)設四邊形AFEC的面積為,求關于的函數(shù)關系式,并求出的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,四邊形OABC是菱形,點C的坐標為(4,0),∠AOC=60°,垂直于x軸的直線ly軸出發(fā),沿x軸正方向以每秒1個單位長度的速度向右平移,設直線l與菱形OABC的兩邊分別交于點M,N(點M在點N的上方),若△OMN的面積為S,直線l的運動時間為t 秒(0≤t≤4),則能大致反映St的函數(shù)關系的圖象是( )

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線a≠0)經(jīng)過點A﹣3,0)、B10)、C﹣21),交y軸于點M

1)求拋物線的表達式;

2D為拋物線在第二象限部分上的一點,作DE垂直x軸于點E,交線段AM于點F,求線段DF長度的最大值,并求此時點D的坐標;

3)拋物線上是否存在一點P,作PN垂直x軸于點N,使得以點P、AN為頂點的三角形與MAO相似?若存在,求點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面材料:
小聰遇到這樣一個有關角平分線的問題:如圖1,在△ABC中,∠A=2∠B,CD平分∠ACB,AD=2.2,AC=3.6
求BC的長.
小聰思考:因為CD平分∠ACB,所以可在BC邊上取點E,使EC=AC,連接DE.這樣很容易得到△DEC≌△DAC,經(jīng)過推理能使問題得到解決(如圖2).
請回答:

(1)△BDE是
(2)BC的長為

查看答案和解析>>

同步練習冊答案