如圖,已知AB是⊙O的直徑,直線CD與⊙O相切于點(diǎn)C,AC平分∠DAB.
1.求證:AD⊥DC
2.若,, 求的值以及AB的長.
1.連接OC
∵OC=OA
∴∠CAO=∠OCA ---------------------------------1分
又∵CD與圓O相切
∴∠OCD=90°
即∠OCA+∠DCA=90°
∴∠CAO+∠DCA=90°
又∵AC平分∠DAB
∴∠DAC=∠CAO
∴∠DAC+∠DCA=90°
∴∠ADC=90°
即AD⊥DC ---------------------------------4分
2.連接BC
∵AD⊥DC∴
因?yàn)锳B為圓O的直徑
∴∠ACB=90°
∴∠ADC=∠ACB=90°
又∵∠DAC=∠CAO
∴△ADC∽△ACB
∴即
∴ ---------------------------------2分
---------------------------------3分
解析:(1)連接OC,根據(jù)切線的性質(zhì)得到OC與CD垂直,進(jìn)而得到∠OCA+∠DCA=90°,由AC為角平分線,根據(jù)角平分線定義得到兩個角相等,又OA=OC,根據(jù)等邊對等角得到又得到另兩個角相等,等量代換后得到∠DAC=∠OCA,根據(jù)等角的余角相等得到∠DCA+∠DAC=90°,從而得到∠ADC為直角,得證;
(2)先用勾股定理求出AC的長度,再利用△ADC∽△ACB求出AB的長度,然后利用直角三角形的性質(zhì)求出的值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
BE | AD |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
EB |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com