【題目】(12分)某蔬菜經銷商去蔬菜生產基地批發(fā)某種蔬菜,已知這種蔬菜的批發(fā)量在20千克~60千克之間(含20千克和60千克)時,每千克批發(fā)價是5元;若超過60千克時,批發(fā)的這種蔬菜全部打八折,但批發(fā)總金額不得少于300元.
(1)根據題意,填寫如表:
(2)經調查,該蔬菜經銷商銷售該種蔬菜的日銷售量y(千克)與零售價x(元/千克)是一次函數關系,其圖象如圖,求出y與x之間的函數關系式;
(3)若該蔬菜經銷商每日銷售此種蔬菜不低于75千克,且當日零售價不變,那么零售價定為多少時,該經銷商銷售此種蔬菜的當日利潤最大?最大利潤為多少元?
【答案】(1)300,360;(2)y=﹣30x+240;(3)當零售價定為6時,當日可獲得利潤最大,最大利潤為120元.
【解析】試題分析:(1)根據這種蔬菜的批發(fā)量在20千克~60千克之間(含20千克和60千克)時,每千克批發(fā)價是5元,可得60×5=300元;若超過60千克時,批發(fā)的這種蔬菜全部打八折,則90×5×0.8=360元;
(2)把點(5,90),(6,60)代入函數解析式y=kx+b(k≠0),列出方程組,通過解方程組求得函數關系式;
(3)利用最大利潤=y(x-4),進而利用配方法求出函數最值即可.
試題解析:(1)由題意知:當蔬菜批發(fā)量為60千克時:60×5=300(元),當蔬菜批發(fā)量為90千克時:90×5×0.8=360(元),
填寫表格如下:
蔬菜的批發(fā)量(千克) | … | 25 | 60 | 75 | 90 | … |
所付的金額(元) | … | 125 | 300 | 300 | 360 | … |
(2)設該一次函數解析式為y=kx+b(k≠0),
把點(5,90),(6,60)代入,得,
解得: .
故該一次函數解析式為:y=-30x+240;
(3)設當日可獲利潤w(元),日零售價為x元,由(2)知,
w=(-30x+240)(x-5×0.8)=-30(x-6)2+120,
∵-30x+240≥75,即x≤5.5,
∴當x=5.5時,當日可獲得利潤最大,最大利潤為112.5元.
科目:初中數學 來源: 題型:
【題目】如圖ABCD是一個正方形花園,E、F是它的兩個門,且DE=CF,要修建兩條路BE和AF,這兩條路等長嗎?它們有什么位置關系?請證明你的猜想.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在一張長為7cm,寬為5cm的矩形紙片上,現要剪下一個腰長為4cm的等腰三角形,要求等腰三角形的一個頂點與矩形的一個頂點重合,其余的兩個頂點在矩形的邊上,則剪下的等腰三角形一腰上的高不可能是( )
A.4
B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com