【題目】如圖,⊙O是Rt△ABC的外接圓,∠ABC=90°,點P是⊙O外一點,PA切⊙O于點A,且PA=PB.
(1)求證:PB是⊙O的切線;
(2)已知PA=2,BC=2.求⊙O的半徑.
【答案】(1)證明見解析(2)圓的半徑為2
【解析】(1)、連接OB,由OC=OB,PA=PB,利用等邊對等角得到兩對角相等,再利用弦切角等于夾弧所對的圓周角得到一對角相等,等量代換得到四個角都相等,由∠ABC為直角,得到∠OBC與∠OBA互余,等量代換得到∠OBA與∠PBA互余,即OB垂直于BP,即可確定出BP為圓的切線;(2)、設(shè)圓的半徑為r,則AC=2r,在直角三角形ABC中,由AC與BC,利用勾股定理表示出AB,由(1)得到三角形PAB與三角形OCB相似,由相似得比例,將各自的值代入列出關(guān)于r的方程,求出方程的解得到r的值,即為圓的半徑.
(1)證明:連接OB,∵OC=OB,AB=BP,∴∠OCB=∠OBC,∠PAB=∠PBA,
∵AP為圓O的切線,∴∠PAB=∠C,∴∠PBA=∠OBC,∵∠ABC=90°,
∴∠OBC+∠OBA=90°,∴∠PBA+∠OBA=90°,即∠PBO=90°,則BP為圓O的切線;
(2)解:設(shè)圓的半徑為r,則AC=2r,在Rt△ABC中,AC=2r,BC=2,
根據(jù)勾股定理得:AB==2,∵∠PAB=∠C,∠PBA=∠OBC,
∴△PAB∽△OCB, ∴,即,∴r=2,
∴r2(r2﹣1)=12, ∴r12=4,r22=﹣3(舍), ∴r1=2,r2=﹣2(舍), 則圓的半徑為2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下圖顯示了用計算機模擬隨機投擲一枚圖釘?shù)哪炒螌嶒灥慕Y(jié)果. 隨著實驗次數(shù)的增加,“釘尖向上”的頻率總在一常數(shù)附近擺動,顯示出一定的穩(wěn)定性,可以估計“釘尖向上”的概率是_________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰中,,點E在AC上且不與點A、C重合,在的外部作等腰,使,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF.
請直接寫出線段AF,AE的數(shù)量關(guān)系;
將繞點C逆時針旋轉(zhuǎn),當點E在線段BC上時,如圖,連接AE,請判斷線段AF,AE的數(shù)量關(guān)系,并證明你的結(jié)論;
若,,在圖的基礎(chǔ)上將繞點C繼續(xù)逆時針旋轉(zhuǎn)一周的過程中,當平行四邊形ABFD為菱形時,直接寫出線段AE的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為倡導(dǎo)“低碳生活”,常選擇以自行車作為代步工具,如圖1所示是一輛自行車的實物圖.車架檔CD與AD的長分別為60cm,75cm,且AC⊥CD,垂足為C,座桿CE的長為20cm,點A,C,E在同一條直線上,且∠CAB=75°,如圖2.
(1)求車架檔AC的長;
(2)求車座點E到車架檔AB的距離.
(結(jié)果精確到 1cm.參考數(shù)據(jù):sin75°≈0.9659,cos75°≈0.2588,tan75≈3.7321)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形為正方形,點為線段上一點,連接,過點作,交射線于點,以、為鄰邊作矩形,連接.
(1)如圖,求證:矩形是正方形;
(2)當線段與正方形的某條邊的夾角是時,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在 ABCD中,CD=2AD,BE⊥AD于點E,F(xiàn)為DC的中點,連結(jié)EF、BF,下列結(jié)論:①∠ABC=2∠ABF;②EF=BF;③S四邊形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正確結(jié)論的個數(shù)共有( ).
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形ABCD中,AD=8cm,AB=6cm.動點E從點C開始沿邊CB向點B以2cm/s的速度運動,動點F從點C同時出發(fā)沿邊CD向點D以1cm/s的速度運動至點D停止.如圖可得到矩形CFHE,設(shè)運動時間為x(單位:s),此時矩形ABCD去掉矩形CFHE后剩余部分的面積為y(單位:cm2),則y與x之間的函數(shù)關(guān)系用圖象表示大致是下圖中的( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校八年級(1)班要從班級里數(shù)學(xué)成績較優(yōu)秀的甲、乙兩位學(xué)生中選拔一人參加“全國初中數(shù)學(xué)聯(lián)賽”,為此,數(shù)學(xué)老師對兩位同學(xué)進行了輔導(dǎo),并在輔導(dǎo)期間測驗了6次,測驗成績?nèi)缦卤?單位:分):
次數(shù),1, 2, 3, 4, 5, 6
甲:79,78,84,81,83,75
乙:83,77,80,85,80,75
利用表中數(shù)據(jù),解答下列問題:
(1)計算甲、乙測驗成績的平均數(shù).
(2)寫出甲、乙測驗成績的中位數(shù).
(3)計算甲、乙測驗成績的方差.(結(jié)果保留小數(shù)點后兩位)
(4)根據(jù)以上信息,你認為老師應(yīng)該派甲、乙哪名學(xué)生參賽?簡述理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將平行四邊形ABCD沿對角線BD進行折疊,折疊后點C落在點F處,DF交AB于點E.
(1)求證:;
(2)判斷AF與BD是否平行,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com