如圖,AB為⊙O的直徑,D為⊙O上一點,DE是⊙O的切線,DE⊥AC交AC的延長線于點E,FB是⊙O的切線交AD的延長線于點F.
(1)求證:AD平分∠BAC;
(2)若DE=3,⊙O的半徑為5,求BF的長.
(1)證明見解析;(2)BF=.
【解析】
試題分析:(1)連接BC、OD,由D是弧BC的中點,可知:OD⊥BC;由OB為⊙O的直徑,可得:BC⊥AC,根據(jù)DE⊥AC,可證OD⊥DE,從而可證DE是⊙O的切線;
(2)在Rt△ABC中,運用勾股定理可將愛那個AC的長求出,運用切割線定理可將AE的長求出,根據(jù)△AED∽△ABF,可將BF的長求出.
試題解析:(1)連接OD,BC,OD與BC相交于點G,
∵D是弧BC的中點,
∴OD垂直平分BC,
∵AB為⊙O的直徑,
∴AC⊥BC,
∴OD∥AE.
∵DE⊥AC,
∴OD⊥DE,
∵OD為⊙O的半徑,
∴DE是⊙O的切線.
(2)由(1)知:OD⊥BC,AC⊥BC,DE⊥AC,
∴四邊形DECG為矩形,
∴CG=DE=3,
∴BC=6.
∵⊙O的半徑為5,
∴AB=10,
∴AC==8,
由(1)知:DE為⊙O的切線,
∴DE2=EC•EA,即32=(EA﹣8)EA,
解得:AE=9.
∵D為弧BC的中點,
∴∠EAD=∠FAB,
∵BF切⊙O于B,
∴∠FBA=90°.
又∵DE⊥AC于E,
∴∠E=90°,
∴∠FBA=∠E,
∴△AED∽△ABF,
∴,
∴BF=.
考點:1.切線的判定,2.勾股定理,3.圓周角定理,4.相似三角形的判定與性質(zhì).
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
3 |
3 |
2 |
3 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
5 |
5 |
PF |
PE |
查看答案和解析>>
科目:初中數(shù)學 來源:江蘇省張家港市2012年中考網(wǎng)上閱卷適應性考試數(shù)學試題 題型:013
如圖,AB為⊙O的直甲徑,PD切⊙O于點C,交AB的延長線于D,且CO=CD,則∠PCA=
A.60°
B.65°
C.67.5°
D.75°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com