【題目】如圖(1),在矩形ABCD中,BC=8,點P是BC邊上一點,且BP=3,點E是線段CD上的一個動點,把△PCE沿PE折疊,點C的對應(yīng)點為點F,當(dāng)點E與點D重合時,點F恰好落在AB上.

(1)求CD的長;

(2)若點F剛好落在線段AD的垂直平分線上時,求線段CE的長;

(3)請直接寫出AF的最小值.

【答案】(1)10;(2)y=();(3).

【解析】

如圖1中,設(shè)CD=x,由折疊可知:,RTPBF中,求得AF=x-4,RTAFD中,根據(jù)AD2+AF2=DF2,構(gòu)建方程即可解決問題.

如下圖2所示,MN是線段AD的中垂線,作FGCDH.設(shè)CE=y,根據(jù)RTPNF,求得FN=, CG=FN,GE=-y,RTGEF中,根據(jù)FG2+GE2=EF2,構(gòu)建方程即可解決問題.

要使AF最小,當(dāng)且僅當(dāng)點A、F、P在同一直線上.

(1)當(dāng)點E與點D重合時,如圖

設(shè)CD=x,

由折疊可知:DF=DC=x, PC=PF=5,

RTPBF中,

BF=

AF=x-4,

RTAFD中,∠A=90°

AD2+AF2=DF2

解得:x=10,CD=10.

(2)當(dāng)點F落在AD得中垂線MN上時,

FGDC于點G,則FG=4,

RTPNF中,

FN=

設(shè)CE=y,CG=FN=,

GE=-y,

RTGEF中,由FG2+GE2=EF2

得:42+(-y)2=y2

解之得:y=()

要使AF最小,當(dāng)且僅當(dāng)點A、F、P在同一直線上

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AC是矩形ABCD的對角線,過AC的中點O作EF⊥AC,交BC于點E,交AD于點F,連接AE,CF.
(1)求證:四邊形AECF是菱形;
(2)若AB= ,∠DCF=30°,求四邊形AECF的面積.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC是等邊三角形,點D是線段AC上的一動點,EBC的延長線上,且BDDE

(1)如圖,若點D為線段AC的中點,求證:ADCE;

(2)如圖,若點D為線段AC上任意一點,求證:ADCE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校在基地參加社會實踐話動中,帶隊老師考問學(xué)生:基地計劃新建一個矩形的生物園地,一邊靠舊墻(墻足夠長),另外三邊用總長37米的不銹鋼柵欄圍成,與墻平行的一邊留一個寬為3米的出入口,如圖所示,如何設(shè)計才能使園地的面積最大?如圖是兩位學(xué)生爭議的情境:請根據(jù)上面的信息,解決問題:

(1)設(shè)AB=x米(x>0),試用含x的代數(shù)式表示BC的長;
(2)請你判斷誰的說法正確,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】野營活動中,小明用一張等腰三角形的鐵皮代替鍋,烙一塊與鐵皮形狀、大小相同的餅,烙好一面后把餅翻身,這塊餅?zāi)苷寐湓凇板仭敝校←愑形鍙埲切蔚蔫F皮(如圖所示),她想選擇其中的一張鐵皮代替鍋,烙一塊與所選鐵皮形狀、大小相同的餅.

(1)五張鐵皮中,用序號為_______的鐵皮烙餅,不用刀切即可翻身正好落在“鍋”中;

(2)在余下的鐵皮中選出只需要切一刀(沿直線切餅,下同),然后把兩小塊餅都翻身,它們正好也能落在“鍋”中的鐵皮,畫出切割線,標(biāo)上角的度數(shù).

(3)小明最后拿到的是一張圖形的三角形鐵皮,它既不是等腰三角形又不是直角三角形,也不知道各個角的度數(shù),請在圖中畫出刀痕的位置(不超過3刀),也能使餅翻身后正好落在“鍋”中.(不要寫畫法,但要用適當(dāng)?shù)挠浱柣蛭淖肿骱喴f明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+mx+n與x軸交于A,B兩點,y與軸交于點C,拋物線的對稱軸交x軸于點D.已知A(﹣1,0),C(0,3)

(1)求拋物線的解析式;
(2)在拋物線的對稱軸上是否存在P點,使△PCD是以CD為腰的等腰三角形,如果存在,直接寫出點P的坐標(biāo),如果不存在,請說明理由;
(3)點E是線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,
①求直線BC 的解析式;
②當(dāng)點E運動到什么位置時,四邊形CDBF的面積最大?求四邊形CDBF的最大面積及此時點E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=BC=2 ,將△ABC繞點A逆時針旋轉(zhuǎn)60°,得到△ADE,連接BE,則BE的長是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方形ABCD中,AB=CD=6cm,BC=10cm,點P從點B出發(fā),以2cm/秒的速度沿BC向點C運動,設(shè)點P的運動時間為t秒:

1PC=______cm.(用t的代數(shù)式表示)

2)當(dāng)t為何值時,ABP≌△DCP

3)當(dāng)點P從點B開始運動,同時,點Q從點C出發(fā),以v cm/秒的速度沿CD向點D運動,是否存在這樣v的值,使得ABPPQC全等?若存在,請求出v的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AD是BC邊上的中線,E是AD的中點,過點A作BC的平行線交BE的延長線于點F,連接CF.

(1)求證:AF=DC;

(2)若ABAC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案