【題目】如圖,中,,BD、CD分別平分∠ABC,∠ACB,過(guò)點(diǎn)D作直線平行于BC,分別交AB、ACEF,則的周長(zhǎng)為 ( )

A.12B.13C.14D.15

【答案】D

【解析】

根據(jù)平行線的性質(zhì)得出∠EDB=DBC,∠EDC=DCB,再利用角平分線性質(zhì)得出∠EBD=DBC,∠DCB=DCF,通過(guò)等量代換得出∠EBD=EDB,∠DCF=FDC,從而得到DE=EB,DF=FC,之后進(jìn)一步求解即可.

EFBC,

∴∠EDB=DBC,∠EDC=DCB,

BDCD分別平分∠ABC,∠ACB,

∴∠EBD=DBC,∠DCB=DCF,

∴∠EBD=EDB,∠DCF=FDC,

DE=EBDF=FC

AEF周長(zhǎng)=AE+DE+AF+DF=AE+EB+AF+FC=AB+AC=15.

所以答案為D選項(xiàng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)對(duì)九年級(jí)準(zhǔn)備選考1分鐘跳繩的同學(xué)進(jìn)行測(cè)試,測(cè)試結(jié)果如下表:

頻數(shù)分布表:

組別

跳繩(次/1分鐘)

頻數(shù)

1

190199

5

2

180189

11

3

170179

23

4

160169

33

請(qǐng)回答下列問(wèn)題:

(1)此次測(cè)試成績(jī)的中位數(shù)落在第   組中;

(2)如果成績(jī)達(dá)到或超過(guò)180/分鐘的同學(xué)可獲滿分,那么本次測(cè)試中獲得滿分的人數(shù)占參加測(cè)試人數(shù)的   %;

(3)如果該校九年級(jí)參加體育測(cè)試的總?cè)藬?shù)為200人,若要繪制一張統(tǒng)計(jì)該校各項(xiàng)目選考人數(shù)分布的扇形圖(如圖),圖中A所在的扇形表示參加選考1分鐘跳繩的人數(shù)占測(cè)試總?cè)藬?shù)的百分比,那么該扇形的圓心角應(yīng)為   °;

(4)如果此次測(cè)試的平均成績(jī)?yōu)?/span>171/分鐘,那么這個(gè)成績(jī)是否可用來(lái)估計(jì)該校九年級(jí)學(xué)生跳繩的平均水平?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四邊形ABCD是梯形,ADBC,∠A90°,BCBDCEBD,垂足為E

(1)求證:ABD≌△ECB;

(2)若∠DBC50°,求∠DCE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,RtABC中,ACBCAEAO,BFBO,則∠EOF的度數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)O是等邊△ABC內(nèi)一點(diǎn),∠BOC,∠AOC100°,將△BOC繞點(diǎn)B按逆時(shí)針?lè)较蛐D(zhuǎn)60°得到△BDA,連接OD.

(1) 求證:△BOD是等邊三角形.

(2) 當(dāng)150°時(shí),試判斷△AOD的形狀,并說(shuō)明理由.

(3) 若△AOD是等腰三角形,請(qǐng)你直接寫出的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,點(diǎn)邊上且點(diǎn)到點(diǎn)的距離與點(diǎn)到點(diǎn)的距離相等.

1)利用尺規(guī)作圖作出點(diǎn),不寫作法但保留作圖痕跡.

2)連接,若,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某文具店購(gòu)進(jìn)一批紀(jì)念冊(cè),每本進(jìn)價(jià)為20元,出于營(yíng)銷考慮,要求每本紀(jì)念冊(cè)的售價(jià)不低于20元且不高于28元,在銷售過(guò)程中發(fā)現(xiàn)該紀(jì)念冊(cè)每周的銷售量y(本)與每本紀(jì)念冊(cè)的售價(jià)x(元)之間滿足一次函數(shù)關(guān)系:當(dāng)銷售單價(jià)為22元時(shí),銷售量為36本;當(dāng)銷售單價(jià)為24元時(shí),銷售量為32本.

(1)求出y與x的函數(shù)關(guān)系式;

(2)當(dāng)文具店每周銷售這種紀(jì)念冊(cè)獲得150元的利潤(rùn)時(shí),每本紀(jì)念冊(cè)的銷售單價(jià)是多少元?

(3)設(shè)該文具店每周銷售這種紀(jì)念冊(cè)所獲得的利潤(rùn)為w元,將該紀(jì)念冊(cè)銷售單價(jià)定為多少元時(shí),才能使文具店銷售該紀(jì)念冊(cè)所獲利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校計(jì)劃選購(gòu)甲、乙兩種圖書作為校園讀書節(jié)的獎(jiǎng)品.已知甲圖書的單價(jià)是乙圖書單價(jià)的倍;用元單獨(dú)購(gòu)買甲種圖書比單獨(dú)購(gòu)買乙種圖書要少本.

1)甲、乙兩種圖書的單價(jià)分別為多少元?

2)若學(xué)校計(jì)劃購(gòu)買這兩種圖書共本,且投入的經(jīng)費(fèi)不超過(guò)元,要使購(gòu)買的甲種圖書數(shù)量不少于乙種圖書的數(shù)量,則共有幾種購(gòu)買方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)閱讀下列材料:已知方程x2+x﹣3=0,求一個(gè)一元二次方程,使它的根分別是已知方程根的2倍.

解:設(shè)所求方程的根為y,則y=2x.所以x=

x=代入已知方程,得(2+﹣3=0,化簡(jiǎn),得y2+2y﹣12=0.

故所求方程為y2+2y﹣12=0.

這種利用方程根的代換求新方程的方法,我們稱為“換根法”.

問(wèn)題:已知方程x2+x﹣1=0,求一個(gè)一元二次方程,使它的根分別是已知方程根的3倍.

查看答案和解析>>

同步練習(xí)冊(cè)答案