【題目】解下列方程或方程組:
① 2( x 2) 3(4 x 1) 9(1 x)
②
③
④
【答案】①;②;③;④
【解析】
①先去括號、移項得到2x-12x+9x=9+4-3,然后合并后把x的系數(shù)化為1即可;
②先把方程兩邊乘以12得3(x-1)-12=2(2x+1),然后去括號、移項、合并,再把x的系數(shù)化為1;
③先把方程整理為,然后利用加減消元法解方程;
④先把第三個方程分別代入第一個和第二個方程得到關(guān)于y和z的二元一次方程組,解二元一次方程組得到y和z的值,然后利用代入法求出x的值.
解:①去括號得2x-4-12x+3=9-9x,
移項得2x-12x+9x=9+4-3,
合并得-x=10,
系數(shù)化為1得x=-10;
②去分母得3(x-1)-12=2(2x+1),
去括號得3x-3-12=4x+2,
移項得3x-4x=2+3+12,
合并得-x=17,
系數(shù)化為1得x=-17;
③原方程組整理為,
①×3-②得y=18,
把y=0代入①得x=-4,
所以原方程組的解為;
④,
把③代入①得5y+z=12,
把③代入②得6y+5z=22,
解方程組,得,
把y=2代入③得x=8,
所以原方程組的解為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人共同計算一道整式乘法題:(2x+a)(3x+b).甲由于把第一個多項式中的“+a”看成了“﹣a”,得到的結(jié)果為6x2+11x﹣10;乙由于漏抄了第二個多項式中x的系數(shù),得到的結(jié)果為2x2﹣9x+10.
(1)求a、b的值.
(2)計算這道乘法題的正確結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題再現(xiàn):
數(shù)形結(jié)合是解決數(shù)學(xué)問題的一種重要的思想方法,借助這種方法可將抽象的數(shù)學(xué)知識變得直觀起來并且具有可操作性,從而可以幫助我們快速解題.初中數(shù)學(xué)里的一些代數(shù)公式,很多都可以通過表示幾何圖形面積的方法進(jìn)行直觀推導(dǎo)和解釋.
例如:利用圖形的幾何意義證明完全平方公式.
證明:將一個邊長為a的正方形的邊長增加b,形成兩個矩形和兩個正方形,如圖1:
這個圖形的面積可以表示成:
(a+b)2或 a2+2ab+b2
∴(a+b)2 =a2+2ab+b2
這就驗證了兩數(shù)和的完全平方公式.
類比解決:
(1)請你類比上述方法,利用圖形的幾何意義證明平方差公式.(要求畫出圖形并寫出推理過程)
問題提出:如何利用圖形幾何意義的方法證明:13+23=32?
如圖2,A表示1個1×1的正方形,即:1×1×1=13
B表示1個2×2的正方形,C與D恰好可以拼成1個2×2的正方形,因此:B、C、D就可以表示2個2×2的正方形,即:2×2×2=23而A、B、C、D恰好可以拼成一個(1+2)×(1+2)的大正方形.
由此可得:13+23=(1+2)2=32
嘗試解決:
(2)請你類比上述推導(dǎo)過程,利用圖形的幾何意義確定:13+23+33= .(要求寫出結(jié)論并構(gòu)造圖形寫出推證過程).
(3)問題拓廣:
請用上面的表示幾何圖形面積的方法探究:13+23+33+…+n3= .(直接寫出結(jié)論即可,不必寫出解題過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D、B、C三點在同一條直線上,∠C=50°,∠FBC=80°.問:∠DBF的平分線BE與AC有怎樣的位置關(guān)系?并說明理由.
解:BE與AC一定平行.
∵D、B、C三點在同一條直線上,
∴∠DBF+∠FBC=180°( ).
又∵∠FBC=80°(已知).
∴∠DBF= .
又∵BE平分∠DBF(已知).
∴( ).
又∵∠C=50°(已知),
∴∠ =∠ ( ),
∴ ∥ .( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點B、E、C、F在同一直線上,且AB=DE,AC=DF,BE=CF,請將下面說明ΔABC≌ΔDEF的過程和理由補(bǔ)充完整。
解:∵BE=CF ( )
∴BE+EC=CF+EC
即BC=EF
在ΔABC和ΔDEF中
AB= ( )
=DF( )
BC=
∴ΔABC≌ΔDEF ( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形網(wǎng)格中,每個小正方形的邊長都為1個單位長度,△ABC的三個頂點的位置如圖所示,現(xiàn)將△ABC平移后得△DEF,使點A的對應(yīng)點為點D,點B的對應(yīng)點為點E.
(1)畫出△DEF;
(2)連接AD、BE,則線段AD與BE的關(guān)系是 ;
(3)求△DEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:關(guān)于x的二次函數(shù)的圖象與x軸交于點A(1,0)和點B,與y軸交于點C(0,3),拋物線的對稱軸與x軸交于點D.
(1)求二次函數(shù)的表達(dá)式;
(2)在y軸上是否存在一點P,使△PBC為等腰三角形.若存在,請求出點P的坐標(biāo);
(3)有一個點M從點A出發(fā),以每秒1個單位的速度在AB上向點B運(yùn)動,另一個點N從點D與點M同時出發(fā),以每秒2個單位的速度在拋物線的對稱軸上運(yùn)動,當(dāng)點M到 達(dá)點B時,點M、N同時停止運(yùn)動,問點M、N運(yùn)動到何處時,△MNB面積最大,試求出最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場經(jīng)銷一種商品,已知其每件進(jìn)價為40元,F(xiàn)在每件售價為70元,每星期可賣出500件。該商場通過市場調(diào)查發(fā)現(xiàn):若每件漲價1元,則每星期少賣出10件;若每件降價1元,則每星期多賣出m(m為正整數(shù))件。設(shè)調(diào)查價格后每星期的銷售利潤為W元。
(1)設(shè)該商品每件漲價x(x為正整數(shù))元,
①若x=5,則每星期可賣出____件,每星期的銷售利潤為_____元;
②當(dāng)x為何值時,W最大,W的最大值是多少。
(2)設(shè)該商品每件降價y(y為正整數(shù))元,
①寫出W與Y的函數(shù)關(guān)系式,并通過計算判斷:當(dāng)m=10時每星期銷售利潤能否達(dá)到(1)中W的最大值;
②若使y=10時,每星期的銷售利潤W最大,直接寫出W的最大值為_____。
(3)若每件降價5元時的每星期銷售利潤,不低于每件漲價15元時的每星期銷售利潤,求m的取值范圍。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以△ABC的邊AC為直徑的⊙O恰為△ABC的外接圓,∠ABC的平分線交⊙O于點D,過點D作DE∥AC交BC的延長線于點E.
(1)求證:DE是⊙O的切線;
(2)若AB=25,BC=,求DE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com