如圖,四邊形ABCD的對角線AC、BD互相垂直,則下列條件能判定四邊形ABCD為菱形的是


  1. A.
    AC、BD互相平分
  2. B.
    BA=BC
  3. C.
    AC=BD
  4. D.
    AB∥CD
A
分析:根據(jù)對角線互相平分的四邊形是平行四邊形即可得出四邊形ABCD是平行四邊形,根據(jù)對角線互相垂直的平行四邊形是菱形即可得出四邊形ABCD是菱形,即可得出答案.
解答:A、∵AC、BD互相平分,
∴四邊形ABCD是平行四邊形,
∵AC⊥BD(已知),
∴平行四邊形ABCD是菱形,故本選項正確;
B、根據(jù)已知AC⊥BD和BA=BC不能推出四邊形ABCD是平行四邊形,即更不是菱形,故本選項錯誤;
C、根據(jù)已知AC⊥BD和AC=BD不能推出四邊形ABCD是平行四邊形,即更不是菱形,故本選項錯誤;
D、根據(jù)已知AC⊥BD和AB∥DC不能推出四邊形ABCD是平行四邊形,即更不是菱形,故本選項錯誤;
故選A.
點評:本題考查了菱形和平行四邊形的判定,注意:菱形的判定定理有:①有一組鄰邊相等的平行四邊形是菱形,②對角線互相垂直的平行四邊形是菱形,③四條邊都相等的四邊形是菱形.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD的對角線AC與BD互相垂直平分于點O,設AC=2a,BD=2b,請推導這個四邊形的性質.(至少3條)
(提示:平面圖形的性質通常從它的邊、內角、對角線、周長、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD的對角線AC、BD交于點P,過點P作直線交AD于點E,交BC于點F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長線上的一點,且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD是正方形,點E是BC的中點,∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點E是BC的中點”改為“E是BC上任意一點”,其余條件不變,則結論AE=EF還成立嗎?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

同步練習冊答案