(本題滿分10分)

如圖,將OA = 6,AB = 4的矩形OABC放置在平面直角坐標系中,動點M、N以每秒1個單位的速度分別從點A、C同時出發(fā),其中點M沿AO向終點O運動,點N沿CB向終點B運動,當兩個動點運動了t秒時,過點N作NP⊥BC,交OB于點P,連接MP.

(1)點B的坐標為   ;用含t的式子表示點P的坐標為     ;(3分)

(2)記△OMP的面積為S,求S與t的函數(shù)關系式(0 < t < 6);并求t為何值時,S有最大值?(4分)

(3)試探究:當S有最大值時,在y軸上是否存在點T,使直線MT把△ONC分割成三角形和四邊形兩部分,且三角形的面積是△ONC面積的?若存在,求出點T的坐標;若不存在,請說明理由.(3分)

 

 

(1)(6,4);(

(2)當時,S有最大值

(3)存在,在y軸上存在點T1(0,),T2(0,)符合條件

解析:解:(1)(6,4);().(其中寫對B點得1分)  3分

(2)∵S△OMP =×OM×,   4分

∴S =×(6 -t)×=+2t.

   =(0 < t <6). 6分

∴當時,S有最大值.    7分

(3)存在.

由(2)得:當S有最大值時,點M、N的坐標分別為:M(3,0),N(3,4),

則直線ON的函數(shù)關系式為:

設點T的坐標為(0,b),則直線MT的函數(shù)關系式為:,

解方程組

∴直線ON與MT的交點R的坐標為

∵S△OCN =×4×3=6,∴S△ORT = S△OCN=2.  8分

當點T在點O、C之間時,分割出的三角形是△OR1T1,如圖,作R1D1⊥y軸,D1為垂足,則S△OR1T1=••••RD1•OT =•b=2.

,     b =.

∴b1 =,b2 =(不合題意,舍去)

此時點T1的坐標為(0,).  9分

② 當點T在OC的延長線上時,分割出的三角形是△R2NE,如圖,設MT交CN于點E,由①得點E的橫坐標為,作R2D2⊥CN交CN于點D2,則

S△R2NE=•EN•R2D2==2.

,b=.

∴b1=,b2=(不合題意,舍去).

∴此時點T2的坐標為(0,).

綜上所述,在y軸上存在點T1(0,),T2(0,)符合條件.…10分

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(本題滿分10分)如圖,已知二次函數(shù)的圖象的頂點為.二次函數(shù)的圖象與軸交于原點及另一點,它的頂點在函數(shù)的圖象的對稱軸上.

(1)求點與點的坐標;
(2)當四邊形為菱形時,求函數(shù)的關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(本題滿分10分)如圖是某品牌太陽能熱火器的實物圖和橫斷面示意圖,已知真空集熱管與支架所在直線相交于水箱橫斷面的圓心,支架與水平面垂直,厘米,,另一根輔助支架厘米,
(1)求垂直支架的長度;(結果保留根號)
(2)求水箱半徑的長度.(結果保留三個有效數(shù)字,參考數(shù)據(jù):
         

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(本題滿分10分)
如圖,四邊形ABCD是長方形.

(1)作△ABC關于直線AC對稱的圖形;
(2)試判斷(1)中所作的圖形與△ACD重疊部分的三角形形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年江蘇省泰州市中考數(shù)學試卷 題型:解答題

(本題滿分10分)如圖,以點O為圓心的兩個同心圓中,矩形ABCD的邊BC為大圓的弦,邊AD與小圓相切于點M,OM的延長線與BC相交于點N。

(1)點N是線段BC的中點嗎?為什么?

(2)若圓環(huán)的寬度(兩圓半徑之差)為6cm,AB=5cm,BC=10cm,求小圓的半徑。

 

 

查看答案和解析>>

同步練習冊答案