【題目】我市部分學(xué)生參加了全國(guó)初中數(shù)學(xué)競(jìng)賽決賽,并取得優(yōu)異成績(jī).已知競(jìng)賽成績(jī)分?jǐn)?shù)都是整數(shù),試題滿分為140分,參賽學(xué)生的成績(jī)分?jǐn)?shù)分布情況如下:
分?jǐn)?shù)段 | 0-19 | 20-39 | 40-59 | 60-79 | 80-99 | 100-119 | 120-140 |
人數(shù) | 0 | 37 | 68 | 95 | 56 | 32 | 12 |
請(qǐng)根據(jù)以上信息解答下列問(wèn)題:
(1)全市共有多少人參加本次數(shù)學(xué)競(jìng)賽決賽?最低分和最高分在什么分?jǐn)?shù)范圍?
(2)經(jīng)競(jìng)賽組委會(huì)評(píng)定,競(jìng)賽成績(jī)?cè)?/span>60分以上(含60分)的考生均可獲得不同等級(jí)的獎(jiǎng)勵(lì),求我市參加本次競(jìng)賽決賽考生的獲獎(jiǎng)比例;
(3)決賽成績(jī)分?jǐn)?shù)的中位數(shù)落在哪個(gè)分?jǐn)?shù)段內(nèi)?
(4)上表還提供了其他信息,例如:“沒(méi)獲獎(jiǎng)的人數(shù)為105人”等等.請(qǐng)你再寫(xiě)出兩條此表提供的信息.
【答案】(1)全市共有300名學(xué)生參加本次競(jìng)賽決賽,最低分在20-39之間,最高分在120-140之間;(2)65%;(3)中位數(shù)落在60-79分?jǐn)?shù)段內(nèi);(4)如“120分以上有12人;60至79分?jǐn)?shù)段的人數(shù)最多”等,答案不唯一.
【解析】
(1)把圖表中的人數(shù)加起來(lái)即可;
(2)60分以上的人數(shù)有195人,用195除以總?cè)藬?shù)得獲獎(jiǎng)率;
(3)由中位數(shù)概念判斷;
(4)答案不唯一,寫(xiě)出正確信息即可.
解:(1)37+68+95+56+32+12=300,即全市共有300名學(xué)生參加本次競(jìng)賽決賽,最低分在20-39之間,最高分在120-140之間;
(2)60分以上的人數(shù)有95+56+32+12=195人,則本次決賽共有195人獲獎(jiǎng),獲獎(jiǎng)率為×100%=65%;
(3)將這組數(shù)據(jù)按從小到大排列為,由于有偶數(shù)個(gè)數(shù),取最中間兩個(gè)數(shù)的平均數(shù),第150、151位都是60-79分?jǐn)?shù)段內(nèi),則決賽成績(jī)的中位數(shù)落在60-79分?jǐn)?shù)段內(nèi);
(4)如“120分以上有12人;60至79分?jǐn)?shù)段的人數(shù)最多”等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,四邊形AOBC是矩形,點(diǎn)O(0,0),點(diǎn)A(5,0),點(diǎn)B(0,3).以點(diǎn)A為中心,順時(shí)針旋轉(zhuǎn)矩形AOBC,得到矩形ADEF,點(diǎn)O,B,C的對(duì)應(yīng)點(diǎn)分別為D,E,F.
(1)如圖①,當(dāng)點(diǎn)D落在BC邊上時(shí),求點(diǎn)D的坐標(biāo);
(2)如圖②,當(dāng)點(diǎn)D落在線段BE上時(shí),AD與BC交于點(diǎn)H.
①求證△ADB≌△AOB;
②求點(diǎn)H的坐標(biāo).
(3)記K為矩形AOBC對(duì)角線的交點(diǎn),S為△KDE的面積,求S的取值范圍(直接寫(xiě)出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知反比例函數(shù)y=(x≠0)的圖象經(jīng)過(guò)(3,-1),則當(dāng)1<y<3時(shí),自變量x的取值范圍是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示是一塊含30°,60°,90°的直角三角板,直角頂點(diǎn)O位于坐標(biāo)原點(diǎn),斜邊AB垂直x軸,頂點(diǎn)A在函數(shù)y1=(x>0)的圖象上,頂點(diǎn)B在函數(shù)y2=(x>0)的圖象上,∠ABO=30°,則=( )
A. ﹣B. ﹣C. ﹣D. ﹣
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,OA和OB是⊙O的半徑,OB=2,OA⊥OB,P是OA上任一點(diǎn),BP的延長(zhǎng)線交⊙O于點(diǎn)Q,過(guò)點(diǎn)Q的⊙O的切線交OA延長(zhǎng)線于點(diǎn)R.
(1)求證:RP=RQ;
(2)若OP=PQ,求PQ的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線與軸交于A、B兩點(diǎn),點(diǎn)P在函數(shù)的圖象上,若△PAB為直角三角形,則滿足條件的點(diǎn)P的個(gè)數(shù)為( ).
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 6個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l經(jīng)過(guò)A(6,0)和B(0,12)兩點(diǎn),且與直線y=x交于點(diǎn)C,點(diǎn)P(m,0)在x軸上運(yùn)動(dòng).
(1)求直線l的解析式;
(2)過(guò)點(diǎn)P作l的平行線交直線y=x于點(diǎn)D,當(dāng)m=3時(shí),求△PCD的面積;
(3)是否存在點(diǎn)P,使得△PCA成為等腰三角形?若存在,請(qǐng)直接寫(xiě)出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于圓O,∠BOC=120°,AD為圓O的直徑.AD交BC于P點(diǎn)且PB=1,PC=2,則AC的長(zhǎng)為( )
A. B. C. 3D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,弓形ABC中,∠BAC=60°,BC=2,若點(diǎn)P在優(yōu)弧BAC上由點(diǎn)B向點(diǎn)C移動(dòng),記△PBC的內(nèi)心為I,點(diǎn)I隨點(diǎn)P的移動(dòng)所經(jīng)過(guò)的路程為m,則m的取值范圍為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com