【題目】如圖,在△ABC中,AB=AC,D是BC上任意一點,過D分別向AB、AC引垂線,垂足分別為E、F點.
(1)當點D在BC的什么位置時,DE=DF?并證明.
(2)在滿足第一問的條件下,連接AD,此時圖中共有幾對全等三角形?并請給予寫出(不 必證明).
(3)過C點作AB邊上的高CG,請問DE、DF、CG的長之間存在怎樣的等量關(guān)系?并加以證明.
【答案】(1)當點D在BC的中點上時,DE=DF,證明見解析;(2)有3對全等三角形,有△BED≌△CFD,△ADB≌△ADC,△AED≌△AFD;(3)CG=DE+DF,證明見解析.
【解析】試題分析:(1)因為當△BED和△CFD時,DE=DF,所以當點D在BC中點時,可利用AAS判定△BED和△CFD全等,利用全等三角形的性質(zhì)可得DE=DF,
(2)在(1)的結(jié)論下:DE=DF,BD=CD, 利用SSS可判定△ADB≌△ADC,
利用HL可判定△AED≌△AFD,利用AAS可判定△BED≌△CFD,所以有3對全等三角形.
(3)連接AD,根據(jù)三角形的面積公式即可求證.
(1)當點D在BC的中點上時,DE=DF,
證明:∵D為BC中點,
∴BD=CD,
∵AB=AC,
∴∠B=∠C,
∵DE⊥AB,DF⊥AC,
∴∠DEB=∠DFC=90°,
∵在△BED和CFD中,
∴△BED≌△CFD(AAS),
∴DE=DF.
(2)
有3對全等三角形,有△BED≌△CFD,△ADB≌△ADC,△AED≌△AFD,
(3)CG=DE+DF,
證明:連接AD,
因為,
所以,
因為AB=AC,
所以.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,點M為直線AB上一動點, 都是等邊三角形,連接BN
求證: ;
分別寫出點M在如圖2和圖3所示位置時,線段AB、BM、BN三者之間的數(shù)量關(guān)系不需證明;
如圖4,當時,證明: .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,BC⊥AB于點B,連接OC交⊙O于點E,弦AD∥OC,弦DF⊥AB于點G.
(1)求證:點E是 的中點;
(2)求證:CD是⊙O的切線;
(3)若AD=12,⊙O的半徑為10,求弦DF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們知道,任意一個正整數(shù)n都可以進行這樣的分解:n=p×q(p,q是正整數(shù),且p≤q),在n的所有這種分解中,如果p,q兩因數(shù)之差的絕對值最小,我們就稱p×q是n的最佳分解,并規(guī)定:F(n)=,例如12可以分解成1×12,2×6或3×4,因為12-1>6-2>4-3,所有3×4是最佳分解,所以F(12)=.
(1)如果一個正整數(shù)a是另外一個正整數(shù)b的平方,我們稱正整數(shù)a是完全平方數(shù),求證:對任意一個完全平方數(shù)m,總有F(m)=1.
(2)如果一個兩位正整數(shù)t,t=10x+y(1≤x≤y≤9,x,y為自然數(shù)),交換其個位上的數(shù)與十位上的數(shù)得到的新數(shù)減去原來的兩位正整數(shù)所得的差為18,那么我們稱這個數(shù)t為“吉祥數(shù)”,求所有“吉祥數(shù)”中F(t)的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】生活與應用:
在一條筆直的東西走向的馬路上,有少年宮、學校、超市、醫(yī)院四家公共場所.已知少年宮在學校東300米,超市在學校西200米,醫(yī)院在學校東500米.
(1)你能利用所學過的數(shù)軸知識描述它們的位置嗎?
(2)小明放學后要去醫(yī)院看望生病住院的奶奶,他從學校出發(fā)向西走了200米,又向西走了﹣700米,你說他能到醫(yī)院嗎?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】體育課上對七年級(1)班的8名女生做仰臥起坐測試,若以16次為達標,超過的次數(shù)用正數(shù)表示,不足的次數(shù)用負數(shù)表示.現(xiàn)成績抄錄如下:
+2,+2,﹣2,+3,+1,﹣1,0,+1.問:
(1)有幾人達標?
(2)平均每人做幾次?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=a°.則下列結(jié)論: ①∠BOE=(180﹣a)°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正確結(jié)論__________(填編號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某日的錢塘江觀潮信息如表:
按上述信息,小紅將“交叉潮”形成后潮頭與乙地之間的距離 (千米)與時間 (分鐘)的函數(shù)關(guān)系用圖3表示,其中:“11:40時甲地‘交叉潮’的潮頭離乙地12千米”記為點 ,點 坐標為 ,曲線 可用二次函數(shù) ( , 是常數(shù))刻畫.
(1)求 的值,并求出潮頭從甲地到乙地的速度;
(2)11:59時,小紅騎單車從乙地出發(fā),沿江邊公路以 千米/分的速度往甲地方向去看潮,問她幾分鐘后與潮頭相遇?
(3)相遇后,小紅立即調(diào)轉(zhuǎn)車頭,沿江邊公路按潮頭速度與潮頭并行,但潮頭過乙地后均勻加速,而單車最高速度為 千米/分,小紅逐漸落后,問小紅與潮頭相遇到落后潮頭1.8千米共需多長時間?(潮水加速階段速度 , 是加速前的速度).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com