【題目】如圖,某數(shù)學(xué)興趣小組想測量一棵樹CD的高度,他們先在點A處測得樹頂C的仰角為30°,然后沿AD方向前行10m,到達(dá)B點,在B處測得樹頂C的仰角高度為60°(A、B、D三點在同一直線上).請你根據(jù)他們測量數(shù)據(jù)計算這棵樹CD的高度(結(jié)果精確到0.1m).(參考數(shù)據(jù):≈1.414,≈1.732)
【答案】8.7米
【解析】試題分析:首先利用三角形的外角的性質(zhì)求得∠ACB的度數(shù),得到BC的長度,然后在直角△BDC中,利用三角函數(shù)即可求解.
試題解析:∵∠CBD=∠A+∠ACB,
∴∠ACB=∠CBD﹣∠A=60°﹣30°=30°,
∴∠A=∠ACB,
∴BC=AB=10(米).
在直角△BCD中,CD=BCsin∠CBD=10×=5≈5×1.732=8.7(米).
答:這棵樹CD的高度為8.7米.
考點:解直角三角形的應(yīng)用
【題型】解答題
【結(jié)束】
23
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=﹣x2+ax+b交x軸于A(1,0),B(3,0)兩點,點P是拋物線上在第一象限內(nèi)的一點,直線BP與y軸相交于點C.
(1)求拋物線y=﹣x2+ax+b的解析式;
(2)當(dāng)點P是線段BC的中點時,求點P的坐標(biāo);
(3)在(2)的條件下,求sin∠OCB的值.
【答案】(1) y=﹣x2+4x﹣3;(2) 點P的坐標(biāo)為(,);(3) .
【解析】分析:(1)將點A、B代入拋物線y=-x2+ax+b,解得a,b可得解析式;
(2)由C點橫坐標(biāo)為0可得P點橫坐標(biāo),將P點橫坐標(biāo)代入(1)中拋物線解析式,易得P點坐標(biāo);
(3)由P點的坐標(biāo)可得C點坐標(biāo),A、B、C的坐標(biāo),利用勾股定理可得BC長,利用sin∠OCB=可得結(jié)果.
詳解:(1)將點A、B代入拋物線y=﹣x2+ax+b可得,
,
解得,a=4,b=﹣3,
∴拋物線的解析式為:y=﹣x2+4x﹣3;
(2)∵點C在y軸上,
所以C點橫坐標(biāo)x=0,
∵點P是線段BC的中點,
∴點P橫坐標(biāo)xP==,
∵點P在拋物線y=﹣x2+4x﹣3上,
∴yP=﹣3=,
∴點P的坐標(biāo)為(,);
(3)∵點P的坐標(biāo)為(,),點P是線段BC的中點,
∴點C的縱坐標(biāo)為2×﹣0=,
∴點C的坐標(biāo)為(0,),
∴BC==,
∴sin∠OCB===.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】黨的十八大提出,倡導(dǎo)富強(qiáng)、民主、文明、和諧,倡導(dǎo)自由、平等、公正、法治,倡導(dǎo)愛國、敬業(yè)、誠信、友善,積極培育和踐行社會主義核心價值觀,這24個字是社會主義核心價值觀的基本內(nèi)容.其中:
“富強(qiáng)、民主、文明、和諧”是國家層面的價值目標(biāo);
“自由、平等、公正、法治”是社會層面的價值取向;
“愛國、敬業(yè)、誠信、友善”是公民個人層面的價值準(zhǔn)則.
小光同學(xué)將其中的“文明”、“和諧”、“自由”、“平等”的文字分別貼在4張硬紙板上,制成如右圖所示的卡片.將這4張卡片背面朝上洗勻后放在桌子上,從中隨機(jī)抽取一張卡片,不放回,再隨機(jī)抽取一張卡片.
(1)小光第一次抽取的卡片上的文字是國家層面價值目標(biāo)的概率是 ;
(2)請你用列表法或畫樹狀圖法,幫助小光求出兩次抽取卡片上的文字一次是國家層面價值目標(biāo)、一次
是社會層面價值取向的概率(卡片名稱可用字母表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O為直線AB上一點,∠COE=90° ,OF 平分∠AOE,
(1)若∠BOE=80°,求∠COF的度數(shù).
(2)若∠COF=α(0°<α<90°),則∠BOE= (用含α的式子表示) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,P為△ABC所在平面上一點,且∠APB=∠BPC=∠CPA=120°,則點P叫作△ABC的費馬點.
(1)如果點P為銳角△ABC的費馬點,且∠ABC=60°.
①求證: △ABP∽△BCP;
②若PA=3,PC=4,求PB的長;
(2)如圖②,已知銳角△ABC,分別以AB,AC為邊向外作正△ABE和正△ACD,CE和BD相交于點P,連接AP.
①求∠CPD的度數(shù);
②求證:點P為△ABC的費馬點.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列結(jié)論:①平面內(nèi)3條直線兩兩相交,共有3個交點;②在平面內(nèi),若∠AOB =40°,∠AOC= ∠BOC,則∠AOC的度數(shù)為20°;③若線段AB=3, BC=2,則線段AC的長為1或5;④若∠a+∠β=180°,且∠a<∠β,則∠a的余角為(∠β-∠a).其中正確結(jié)論的個數(shù)( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列結(jié)論:①幾個有理數(shù)相乘,若其中負(fù)因數(shù)有奇數(shù)個,則積為負(fù);②兩個三次多項式的和一定是三次多項式;③若xyz<0,則+++的值為0或﹣4;④若a,b互為相反數(shù),則=﹣1;⑤若x=y,則=.其中正確的個數(shù)有( 。
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解全校2400名學(xué)生到校上學(xué)的方式,在全校隨機(jī)抽取了若干名學(xué)生進(jìn)行問卷調(diào)查.問卷給出了五種上學(xué)方式供學(xué)生選擇,每人只能選一項,且不能不選.將調(diào)查得到的結(jié)果繪制成如圖所示的頻數(shù)分布直方圖和扇形統(tǒng)計圖(均不完整).
(1)這次調(diào)查中,一共抽取了多少名學(xué)生?
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)估計全校所有學(xué)生中有多少人乘坐公交車上學(xué).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A、B兩輛汽車同時從相距330千米的甲、乙兩地相向而行,s(千米)表示汽車與甲地的距離,t(分)表示汽車行駛的時間,如圖,L1,L2分別表示兩輛汽車的s與t的關(guān)系.
(1)L1表示哪輛汽車到甲地的距離與行駛時間的關(guān)系?
(2)汽車B的速度是多少?
(3)求L1,L2分別表示的兩輛汽車的s與t的關(guān)系式.
(4)2小時后,兩車相距多少千米?
(5)行駛多長時間后,A、B兩車相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明研究二次函數(shù)(為常數(shù))性質(zhì)時有如下結(jié)論:①該二次函數(shù)圖象的頂點始終在平行于x軸的直線上;②該二次函數(shù)圖象的頂點與x軸的兩個交點構(gòu)成等腰直角三角形;③當(dāng)時,y隨x的增大而增大,則m的取值范圍為;④點與點在函數(shù)圖象上,若,,則.其中正確結(jié)論的個數(shù)為( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com