【題目】某公司投資新建了一商場(chǎng),共有商鋪30.據(jù)預(yù)測(cè),當(dāng)每間的年租金定為10萬(wàn)元時(shí),可全部租出.每間的年租金每增加5 000,少租出商鋪1.該公司要為租出的商鋪每間每年交各種費(fèi)用1萬(wàn)元,未租出的商鋪每間每年交各種費(fèi)用5 000.

1)當(dāng)每間商鋪的年租金定為13萬(wàn)元時(shí),能租出多少間?

2)當(dāng)每間商鋪的年租金定為多少萬(wàn)元時(shí),該公司的年收益(收益=租金-各種費(fèi)用)為275萬(wàn)元?

【答案】(124;(210.5萬(wàn)元或15萬(wàn)元

【解析】試題分析:(1)租金增加50000元,少租出10間,故可租出20間;

2)設(shè)每間商鋪的年租金增加x萬(wàn)元,根據(jù):租金-各種費(fèi)用=收益,列方程求解.

試題解析:(1∵ 50000÷500010

能租出20.

2)設(shè)每間商鋪的年租金增加x萬(wàn)元,則

30×10x)-(30×1×0.5284

2 x211x140,

∴ x23.5

每間商鋪的年租金定為13.5萬(wàn)元或12萬(wàn)元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】方程2x=4的解是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCADE中,∠BAC=DAE=90°,AB=AC,AD=AE,C,D,E在同一條直線上,連結(jié)BD,BE.有以下結(jié)論①ACEBCD;BD=CE;③∠ADB=45°;④∠ACE+DBC=45°.其中正確結(jié)論的是_________.(寫上序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】-3x3+6x2y﹣3xy2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AB=3,AD=1,AB在數(shù)軸上,若以點(diǎn)A為圓心,對(duì)角線AC的長(zhǎng)為半徑作弧交數(shù)軸的正半軸于M,則點(diǎn)M的表示的數(shù)為________________

【答案】

【解析】ACAM,∴AM

型】填空
結(jié)束】
11

【題目】ABC中,AB10,AC2,BC邊上的高AD6,則另一邊BC等于_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】先化簡(jiǎn)再求值:(a-2)2-(a-1)·(a+1)+5a,其中a=-2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2a3-12a2+18a

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:在平行四邊形ABCD中,用直尺和圓規(guī)作∠BAD的平分線交BC于點(diǎn)E(尺規(guī)作圖的痕跡保留在圖中了),連接EF.

(1)求證:四邊形ABEF為菱形;

(2)AE,BF相交于點(diǎn)O,若BF=6,AB=5,求AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,DE分別是AB,AC的中點(diǎn),BE=2DE,延長(zhǎng)DE到點(diǎn)F,使得EF=BE,連CF

(1)求證:四邊形BCFE是菱形;

(2)若CE=6,∠BEF=120°,求菱形BCFE的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案