【題目】如圖,AB、CD為⊙O的直徑,弦AE∥CD,連接BE交CD于點 F,過點E作直線EP與CD的延長線交于點P,使∠PED=∠C.
(1)求證:PE是⊙O的切線;
(2)求證:ED平分∠BEP;
(3)若⊙O的半徑為5,CF=2EF,求PD的長.
【答案】(1)證明見試題解析;(2)證明見試題解析;(3).
【解析】試題分析:(1)如圖,連接OE,證明OE⊥PE即可得出PE是⊙O的切線;
(2)由圓周角定理得到∠AEB=∠CED=90°,進而得到∠3=∠4,結(jié)合已知條件證得結(jié)論;
(3)設(shè)EF=x,則CF=2x,在RT△OEF中,根據(jù)勾股定理求出EF的長,進而求得BE,CF的長,在RT△AEB中,根據(jù)勾股定理求出AE的長,然后根據(jù)△AEB∽△EFP,求出PF的長,即可求得PD的長.
試題解析:(1)如圖,連接OE.∵CD是圓O的直徑,∴∠CED=90°,∵OC=OE,∴∠1=∠2,又∵∠PED=∠C,即∠PED=∠1,∴∠PED=∠2,∴∠PED+∠OED=∠2+∠OED=90°,即∠OEP=90°,∴OE⊥EP,又∵點E在圓上,∴PE是⊙O的切線;
(2)∵AB、CD為⊙O的直徑,∴∠AEB=∠CED=90°,∴∠3=∠4(同角的余角相等),又∵∠PED=∠1,∴∠PED=∠4,即ED平分∠BEP;
(3)設(shè)EF=x,則CF=2x,∵⊙O的半徑為5,∴OF=2x﹣5,在RT△OEF中, ,即,解得x=4,∴EF=4,∴BE=2EF=8,CF=2EF=8,∴DF=CD﹣CF=10﹣8=2,∵AB為⊙O的直徑,∴∠AEB=90°,∵AB=10,BE=8,∴AE=6,∵∠BEP=∠A,∠EFP=∠AEB=90°,∴△AEB∽△EFP,∴,即,∴PF=,∴PD=PF﹣DF==.
科目:初中數(shù)學 來源: 題型:
【題目】下列各組數(shù)中,不能構(gòu)成直角三角形的是( ).
A. 3,4,5 B. 6,8,10 C. 4,5,6 D. 5,12,13
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在創(chuàng)建全國森林城市的活動中,我區(qū)一“青年突擊隊”決定義務整修一條1000米長的綠化帶,開工后,附近居民主動參加到義務勞動中,使整修的速度比原計劃提高了一倍,結(jié)果提前4小時完成任務,問“青年突擊隊”原計劃每小時整修多少米長的綠化帶?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知O為直線AD上一點,∠AOC與∠AOB互補,OM、ON分別是∠AOC、∠AOB的平分線,∠MON=56°.
⑴ ∠COD與∠AOB相等嗎?請說明理由;
⑵ 求∠BOC的度數(shù);
⑶ 求∠AOB與∠AOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙、丙、丁參加體育訓練,近期10次跳繩測試的平均成績都是每分鐘174個,其方差如下表:
選手 | 甲 | 乙 | 丙 | 丁 |
方差 | 0.023 | 0.018 | 0.020 | 0.021 |
則這10次跳繩中,這四個人發(fā)揮最穩(wěn)定的是( )
A.甲
B.乙
C.丙
D.丁
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點A(0,4),B(7,0),C(7,4),連接AC,BC得到矩形AOBC,點D的邊AC上,將邊OA沿OD折疊,點A的對應邊為A'.若點A'到矩形較長兩對邊的距離之比為1:3,則點A'的坐標為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解某市市民“綠色出行”方式的情況,某校數(shù)學興趣小組以問卷調(diào)查的形式,隨機調(diào)查了某市部分出行市民的主要出行方式(參與問卷調(diào)查的市民都只從以下五個種類中選擇一類),并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計圖.
種類 | A | B | C | D | E |
出行方式 | 共享單車 | 步行 | 公交車 | 的士 | 私家車 |
根據(jù)以上信息,回答下列問題:
(1)參與本次問卷調(diào)查的市民共有 人,其中選擇B類的人數(shù)有 人;
(2)在扇形統(tǒng)計圖中,求A類對應扇形圓心角α的度數(shù),并補全條形統(tǒng)計圖;
(3)該市約有12萬人出行,若將A,B,C這三類出行方式均視為“綠色出行”方式,請估計該市“綠色出行”方式的人數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com