【題目】某服裝廠(chǎng)里有許多剩余的三角形邊角料,找出一塊△ABC,測(cè)得∠C=90°(如圖),現(xiàn)要從這塊三角形上剪出一個(gè)半圓O,做成玩具,要求:使半圓O與三角形的兩邊AB、AC相切,切點(diǎn)分別為D、C,且與BC交于點(diǎn)E.
(1)在圖中設(shè)計(jì)出符合要求的方案示意圖.(要求:尺規(guī)作圖,不寫(xiě)作法,保留作圖痕跡).
(2)Rt△ABC中,AC=3,AB=5,連接AO,求出AO的長(zhǎng)度.
【答案】(1)作圖見(jiàn)解析;(2)AO為.
【解析】
(1)以∠A的平分線(xiàn)與BC的交點(diǎn)為圓心,以到C的距離為半徑的半圓即為所求;
(2)連接OD,在Rt△ABC中,根據(jù)勾股定理得BC=4,根據(jù)切線(xiàn)的性質(zhì)和線(xiàn)段的和差關(guān)系得到BD=2,設(shè)⊙O的半徑為r,則OB=4-r,根據(jù)勾股定理求得半徑,再在Rt△ACO中,根據(jù)勾股定理求得AO.
(1) 半圓O就是所求的圖形,
(2)連接OD,
∵Rt△ABC中,AC=3,AB=5,根據(jù)勾股定理得BC=4,
由題意可知,AB是⊙O的切線(xiàn),
∴∠ODB=90°,AD=AC=3,
∴BD=2,
設(shè)⊙O的半徑為r,則OB=4-r,
∴r2+22=(4-r)2.
解得,
在Rt△ACO中,根據(jù)勾股定理得.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】菱形中,,點(diǎn)在邊上,點(diǎn)在邊上.
(1)如圖,若是的中點(diǎn),,求證:;
(2)如圖,若,求證:是等邊三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)A、B均在由面積為1的相同小矩形組成的網(wǎng)格的格點(diǎn)上,建立平面直角坐標(biāo)系如圖所示.若P是軸上使得∣PA—PB∣的值最大的點(diǎn),Q是軸上使得QA+QB的值最小的點(diǎn),則OP·OQ=__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)操作與探究:如圖,矩形紙片ABCD中,AB=8,將紙片折疊,使頂點(diǎn)B落在邊AD的E點(diǎn)上,折痕的一端G點(diǎn)在邊BC上,BG=10.
①第一次折疊:當(dāng)折痕的另一端點(diǎn)F在AB邊上時(shí),如圖1,求折痕GF的長(zhǎng);
②第二次折疊:當(dāng)折痕的另一端點(diǎn)F在AD邊上時(shí),如圖2,證明四邊形BGEF為菱形,并求出折痕GF的長(zhǎng).
(2)拓展延伸:通過(guò)操作探究發(fā)現(xiàn)在矩形紙片ABCD中,AB=5,AD=13.如圖3所示,折疊紙片,使點(diǎn)A落在BC邊上的A′處,折痕為PQ.當(dāng)點(diǎn)A′在BC邊上移動(dòng)時(shí),折痕的端點(diǎn)P,Q也隨之移動(dòng).若限定點(diǎn)P,Q分別在AB,AD邊上移動(dòng),則點(diǎn)A′在BC邊上可移動(dòng)的最大距離是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)A、B均在由面積為1的相同小矩形組成的網(wǎng)格的格點(diǎn)上,建立平面直角坐標(biāo)系如圖所示.若P是x軸上使得的值最大的點(diǎn),Q是y軸上使得QA十QB的值最小的點(diǎn),則= ▲ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀理解:
反比例函數(shù)y=(k>0)第一象限內(nèi)的圖象如圖1所示,點(diǎn)P、R是雙曲線(xiàn)上不同的兩點(diǎn),過(guò)點(diǎn)P、R分別做PA⊥y軸于點(diǎn)A,RC⊥x軸于點(diǎn)C,兩垂線(xiàn)交點(diǎn)為B.
(1)問(wèn)題提出:線(xiàn)段PB:PA與BR:RC有怎樣的關(guān)系?
問(wèn)題解決:設(shè)點(diǎn)PA=n,PB=m,則點(diǎn)P的坐標(biāo)為(n,),點(diǎn)R的坐標(biāo)為(m+n,),AO=BC=,RC=,BR=,
則BR:RC=,
PB:PA=,
∴PB:PA=BR:RC.
問(wèn)題應(yīng)用:
(2)利用上面的結(jié)論解決問(wèn)題:
①如圖1,如果BR=6,CR=3,AP=4,BP= .
②如圖2,如果直線(xiàn)PR的關(guān)系式y2=﹣x+3,與x軸交于點(diǎn)D,與y軸交于點(diǎn)E,若ED=3PR,求出k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,折疊長(zhǎng)方形(四個(gè)角都是直角)的一邊AD使點(diǎn)D落在BC邊的點(diǎn)F處,已知AB=DC=8cm,AD=BC=10cm,
求:(1)求BF長(zhǎng)度;
(2)求CE的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等腰△ABC中,AB=AC,∠BAC=120°,AD⊥BC于點(diǎn)D,點(diǎn)P是BA延長(zhǎng)線(xiàn)一點(diǎn),點(diǎn)O是線(xiàn)段AD上一點(diǎn),OP=OC.
(1)已知∠APO=18°,求∠DCO的度數(shù);
(2)求證:△OPC是等邊三角形;
(3)求證:AC=AO+AP.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一次函數(shù)y=x +m和y=-x +n的圖象都是經(jīng)過(guò)點(diǎn)A(-2,0),且與y軸分別交于B、C兩點(diǎn).
(1)直接寫(xiě)出B、C兩點(diǎn)的坐標(biāo)B: ;C:
(2)求ABC的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com