如圖,正方形ABCD的邊長(zhǎng)為4,O是AD的中點(diǎn),動(dòng)點(diǎn)E在線(xiàn)段AB上,連接EO并延長(zhǎng)交射線(xiàn)CD于點(diǎn)F,過(guò)O作EF的垂線(xiàn)交射線(xiàn)BC于點(diǎn)G,連接EG、FG.
(1)判斷△GEF的形狀,并說(shuō)明理由;
(2)設(shè)AE=x,△GEF的面積為y,求y關(guān)于x的函數(shù)關(guān)系式;
(3)在點(diǎn)E運(yùn)動(dòng)的過(guò)程中,△GEF能否是等邊三角形?請(qǐng)說(shuō)明理由.
分析:(1)由于四邊形ABCD是正方形,所以正方形的四個(gè)邊相等且對(duì)邊平行,四個(gè)角都是直角,很容易證明△AME≌△DMF,從而可得出結(jié)論.
(2)設(shè)AE=x時(shí),△EGF的面積為y,有兩種情況,當(dāng)點(diǎn)E與點(diǎn)A重合時(shí),即x=0時(shí),可求出y的值,當(dāng)點(diǎn)E不與點(diǎn)A重合時(shí),0<x≤4,根據(jù)條件可證明Rt△AEM∽R(shí)t△NGM,根據(jù)相似三角形的對(duì)應(yīng)邊成比例,可得出函數(shù)式.
(3)不可能,因?yàn)镋F=MG,EG>MG所以EG>EF,所以不可能是等邊三角形.
解答:(1)等腰三角形.
證明:∵四邊形ABCD是正方形,
∴AB∥CD,∠A=∠MDF(1分),
在△AME和△DMF中,
∠AME=∠FMD
AM=DM
∠A=∠MDF
,
∴△AME≌△DMF,
∴EM=FM,
又∵GM⊥EF,
∴EG=FG,即△GEF是等腰三角形;

(2)解:∵當(dāng)點(diǎn)E與點(diǎn)A重合時(shí),如圖1所示,x=0,y=
1
2
AD×MG=
1
2
×4×4=8,
當(dāng)點(diǎn)E不與點(diǎn)A重合時(shí),0<x≤4
∵EM=FM
在Rt△AME中AE=x,AM=2,ME=
x2+4
,
∴EF=2ME=2
x2+4
,
如圖2所示,過(guò)M作MN⊥BC,垂足為N
則∠MNG=90°,∠AMN=90°,MN=AB=AD=2AM,
∴∠AME+∠EMN=90°
∵∠EMG=90°
∴∠GMN+∠EMN=90°
∴∠AME=∠GMN
∴Rt△AEM∽R(shí)t△NGM;

AM
MN
=
ME
MG
,
ME
MG
=
1
2
,
∴MG=2ME=2
x2+4
,
∴y=
1
2
EF×MG=
1
2
×2
x2+4
×2
x2+4
=2x2+8.
∴y=2x2+8(0≤x≤4);

(3)解:不可能.
∵EF=MG=2
x2+4
,在Rt△MEG中EG>MG,
∴EG>EF,
∴△EFG不可能是等邊三角形.
點(diǎn)評(píng):本題考查的是四邊形綜合題,涉及到全等三角形的判定和性質(zhì)定理,相似三角形的判定和性質(zhì)定理,以及全等三角形的判定正方形的性質(zhì)等,難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

19、如圖:正方形ABCD,M是線(xiàn)段BC上一點(diǎn),且不與B、C重合,AE⊥DM于E,CF⊥DM于F.求證:AE2+CF2=AD2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,E點(diǎn)在BC上,AE平分∠BAC.若BE=
2
cm,則△AEC面積為
 
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CD=3DE.將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連接AG、CF.下列結(jié)論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正確結(jié)論的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、如圖,正方形ABCD的邊長(zhǎng)為4,將一個(gè)足夠大的直角三角板的直角頂點(diǎn)放于點(diǎn)A處,該三角板的兩條直角邊與CD交于點(diǎn)F,與CB延長(zhǎng)線(xiàn)交于點(diǎn)E,四邊形AECF的面積是
16

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,正方形ABCD的邊CD在正方形ECGF的邊CE上,連接BE、DG.
(1)若ED:DC=1:2,EF=12,試求DG的長(zhǎng).
(2)觀(guān)察猜想BE與DG之間的關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案