如圖,在△ABC中,∠C=90°,∠A、∠B的平分線交于點D,DE⊥BC于點E,DF⊥AC于點F,

(1)求證:四邊形CFDE是正方形
(2)若AC=3,BC=4,求△ABC的內(nèi)切圓半徑.

可證DE=DG∴DE=DF∵∠C=∠CFD=∠CED=90°∴四邊形CFDE是正方形.
(2)△ABC的內(nèi)切圓半徑為1.

解析試題分析:(1)過D作DG⊥AB交AB于G點,
∵AD是∠BAC的角平分線
∴∠FAD=∠BAD
∵DF⊥AC,DG⊥AB
∴∠AFD=∠AGD=90°
∵AD=AD
∴△AFD≌△AGD
∴DF=DG
同理可證DE=DG
∴DE=DF
∵∠C=∠CFD=∠CED=90°
∴四邊形CFDE是正方形.  
(2).∵AC=3,BC=4
∴AB=5
由(1)知AF=AG,BE=BG
∴AF+BE=AB
∵四邊形CFDE是正方形∴2CE=AC+CB-AB=2,即CE=1
△ABC的內(nèi)切圓半徑為1.
考點:正方形的判定與圓
點評:本題難度中等,主要考查學生對正方形的判定與內(nèi)切圓知識點的掌握。為中考常考題型,學生要牢固掌握幾何性質與判定。

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點A逆時針旋轉30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習冊答案