【題目】如圖,在8×6的方格紙ABCD中,AB6,每個小方格紙的頂點(diǎn)為格點(diǎn),請按要求畫出格點(diǎn)多邊形,且所畫格點(diǎn)多邊形的頂點(diǎn)均不與點(diǎn)A,B,CD重合.

1)在圖1中畫一個格點(diǎn)三角形EFG,使得點(diǎn)E,FG分別在AB,BCAD上,且∠EFG90°,

2)在圖2中畫一個四邊形EFGH,使點(diǎn)F為邊BC的中點(diǎn),E,GH分別落在邊AB,CD,DA上,且EGFH,∠AEG≠90°

【答案】1)見解析;(2)見解析

【解析】

1)根據(jù)格點(diǎn)的組成的圖形都是邊長為1的小正方形,可利用已知的直角邊求解,利用勾股定理的逆定理可得出結(jié)論。

2)強(qiáng)調(diào)∠AEG≠90°.也就是告訴我們點(diǎn)H不是AD的中點(diǎn),然后利用數(shù)形結(jié)合的思維構(gòu)造直角三角形

解:(1EFG即為所求,如圖1所示.

2)四邊形EFGH即為所求,如圖2所示.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+cx軸交于A10),B﹣30)兩點(diǎn).

1)求該拋物線的解析式;

2)設(shè)(1)中的拋物線交y軸與C點(diǎn),在該拋物線的對稱軸上是否存在點(diǎn)Q,使得△QAC的周長最?若存在,求出Q點(diǎn)的坐標(biāo);若不存在,請說明理由;

3)在(1)中的拋物線上的第二象限上是否存在一點(diǎn)P,使△PBC的面積最大?若存在,求出點(diǎn)P的坐標(biāo)及△PBC的面積最大值;若沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線Cy1=﹣x2+bx+4

1)如圖,拋物線與x軸相交于兩點(diǎn)(1m,0)、(1+m0).

①求b的值;

②當(dāng)nxn+1時,二次函數(shù)有最大值為3,求n的值.

2)已知直線ly22xb+9,當(dāng)x≥0時,y1y2恒成立,求b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著移動計算技術(shù)和無線網(wǎng)絡(luò)的快速發(fā)展,移動學(xué)習(xí)方式越來越引起人們的關(guān)注,某校計劃將這種學(xué)習(xí)方式應(yīng)用到教育學(xué)中,從全校1500名學(xué)生中隨機(jī)抽取了部分學(xué)生,對其家庭中擁有的移動設(shè)備的情況進(jìn)行調(diào)查,并繪制出如下的統(tǒng)計圖①和圖②,根據(jù)相關(guān)信息,解答下列問題:

)本次接受隨機(jī)抽樣調(diào)查的學(xué)生人數(shù)為   ,圖①中m的值為   ;

)求本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)、中位數(shù)和平均數(shù);

)根據(jù)樣本數(shù)據(jù),估計該校1500名學(xué)生家庭中擁有3臺移動設(shè)備的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,是⊙O的直徑,弦垂直平分,垂足為,連接

1)如圖1,求的度數(shù);

2)如圖2,點(diǎn)分別為上一點(diǎn),并且,連接,交點(diǎn)為G,R上一點(diǎn),連接交于點(diǎn)H,,求證:

3)如圖3,在(2)的條件下,,求⊙O半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系內(nèi),ABx軸上兩點(diǎn),以AB為直徑的⊙My軸于C,D兩點(diǎn),C的中點(diǎn),弦AEy軸于點(diǎn)F,且點(diǎn)A的坐標(biāo)為(2,0),CD8

1)求⊙M的半徑;

2)動點(diǎn)P在⊙M的圓周上運(yùn)動.

①如圖1,當(dāng)FP的長度最大時,點(diǎn)P記為P,在圖1中畫出點(diǎn)P0,并求出點(diǎn)P0橫坐標(biāo)a的值;

②如圖1,當(dāng)EP平分∠AEB時,求EP的長度;

③如圖2,過點(diǎn)D作⊙M的切線交x軸于點(diǎn)Q,當(dāng)點(diǎn)P與點(diǎn)A,B不重合時,請證明為定值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:的內(nèi)接三角形,,,過點(diǎn)的切線交的延長線于點(diǎn)

1)求證:;

2)如果的半徑為2,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知直線軸的正半軸交于點(diǎn),與軸交于點(diǎn),拋物線經(jīng)過點(diǎn)與點(diǎn),點(diǎn)在第三象限內(nèi),且

1)當(dāng)時,求拋物線的表達(dá)式;

2)設(shè)點(diǎn)坐標(biāo)為,試用分別表示

3)記,求的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是由邊長為1的小正方形構(gòu)成的網(wǎng)格,每個小正方形的頂點(diǎn)叫做格點(diǎn).的頂點(diǎn)在格點(diǎn)上,僅用無刻度尺的直尺在給定網(wǎng)格中畫圖,畫圖過程用虛線表示,畫圖結(jié)果用實(shí)線表示,按步驟完成下列問題:

(1)將邊繞點(diǎn)順時針旋轉(zhuǎn)90°得到線段;

(2)畫邊的中點(diǎn);

(3)連接并延長交于點(diǎn),直接寫出的值;

(4)上畫點(diǎn),連接,使

查看答案和解析>>

同步練習(xí)冊答案