【題目】線段ABCD在正方形網(wǎng)格中的位置如圖所示,將線段AB繞點(diǎn)O按順時(shí)針方向旋轉(zhuǎn)一定角度α,可以得到線段CD.

(1)請(qǐng)?jiān)谙聢D中畫出點(diǎn)O;

(2)若點(diǎn)A、B、CD的坐標(biāo)分別為A(5,5)B(1,1)、C(51)、D(1,﹣5),則點(diǎn)O的坐標(biāo)為_______.

(3)α_____.

【答案】(1)見解析;(2)(-2,-2);(3)90°.

【解析】

(1)連接AC,BD,分別作AC,BD的垂直平分線交于O,正確點(diǎn)O即為所求;(2)構(gòu)建平面直角坐標(biāo)系解決問題即可.(3)構(gòu)建旋轉(zhuǎn)角的定義即可判斷.

解:(1)如圖所示,點(diǎn)O即為所求;

(2)觀察圖象可知,O(2,﹣2).

故答案為(2,﹣2).

(3)觀察圖象可知α90°.

故答案為90°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠AOB=60°,點(diǎn)P是∠AOB內(nèi)的定點(diǎn)且OP=,若點(diǎn)M、N分別是射線OA、OB上異于點(diǎn)O的動(dòng)點(diǎn),則PMN周長(zhǎng)的最小值是(  )

A. B. C. 6 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題背景:如圖1:在四邊形ABCD,AB=AD,BAD=120 ,B=ADC=90°.EF分別是 BC,CD 上的點(diǎn)。且∠EAF=60° . 探究圖中線段BE,EFFD 之間的數(shù)量關(guān)系。 小王同學(xué)探究此問題的方法是,延長(zhǎng) FD 到點(diǎn) G,使 DG=BE,連結(jié) AG,先證明ABE≌△ADG, 再證明AEF≌△AGF,可得出結(jié)論,他的結(jié)論應(yīng)是_________;

探索延伸:如圖2,若四邊形ABCD,AB=AD,B+D=180° .E,F 分別是 BC,CD 上的點(diǎn),且∠EAF=BAD,上述結(jié)論是否仍然成立,并說明理由;

實(shí)際應(yīng)用:如圖3,在某次軍事演習(xí)中,艦艇甲在指揮中心(O處)北偏西30°A,艦艇乙在指揮中心南偏東 70°B,并且兩艦艇到指揮中心的距離相等,接到行動(dòng)指令后,艦艇甲向正東方向以55 海里/小時(shí)的速度前進(jìn),艦艇乙沿北偏東 50°的方向以 75 海里/小時(shí)的速度前進(jìn)2小時(shí)后, 指揮中心觀測(cè)到甲、乙兩艦艇分別到達(dá) E,F ,且兩艦艇之間的夾角為70° ,試求此時(shí)兩艦 艇之間的距離。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在給定的一張平行四邊形紙片上作一個(gè)菱形.甲、乙兩人的作法如下:

甲:連接AC,作AC的垂直平分線MN分別交AD,AC,BC于M,O,N,連接AN,CM,則四邊形ANCM是菱形.

乙:分別作A,B的平分線AE,BF,分別交BC,AD于E,F(xiàn),連接EF,則四邊形ABEF是菱形.

根據(jù)兩人的作法可判斷

A.甲正確,乙錯(cuò)誤 B.乙正確,甲錯(cuò)誤 C.甲、乙均正確 D.甲、乙均錯(cuò)誤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC,∠ACB90°.分別以AB,AC為邊作正方形ABEF和正方形ACMN,連接FN.AC4,BC3,則SANF______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某小區(qū)要用籬笆圍成一矩形花壇,花壇的一邊用足夠長(zhǎng)的墻,另外三邊所用的籬笆之和恰好為米.

1求矩形的面積(用表示,單位平方米)與邊(用表示單位米)之間的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍);怎樣圍,可使花壇面積最大?

2如何圍,可使此矩形花壇面積是平方米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,牧童家在B處,A、B兩處相距河岸的距離AC、BD分別為500m300m,C、D兩處的距離為600m,天黑牧童從A處將牛牽到河邊去飲水,在趕回家,那么牧童最少要走( )

A.800mB.1000mC.1200mD.1500m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+(2m+1)x+m2﹣2=0.

(1)若該方程有兩個(gè)實(shí)數(shù)根,求m的最小整數(shù)值;

(2)若方程的兩個(gè)實(shí)數(shù)根為x1,x2,且(x1﹣x22+m2=21,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).

1)求出ABC的面積;

2)在圖形中作出ABC關(guān)于x軸的對(duì)稱圖形A1B1C1,寫出點(diǎn)A1,B1,C1的坐標(biāo);

3)點(diǎn)Py軸上,使PB+PC的長(zhǎng)最小,請(qǐng)?jiān)?/span>y軸上標(biāo)出點(diǎn)P的位置.

查看答案和解析>>

同步練習(xí)冊(cè)答案