如圖,已知等邊△ABC的周長為6,BD是AC邊的中線,E為BC延長線上一點,CD=CE,那么△BDE的周長是( 。
A. B. C. D.
C
【解析】
試題分析:根據等腰三角形的三線合一的性質結合等邊三角形的性質和勾股定理可得BD的長,再證得△BDE為等腰三角形,即可得到結果.
∵等邊△ABC的周長為6,BD是AC邊的中線,
∴CD=CE=1,BC=2,∠DBC=∠ABC=30°,BD⊥AC,
∴,
∵等邊△ABC,
∴∠ACB=60°,
∵CD=CE,
∴∠DEC=∠CDE=∠ACB=30°,
∴∠DBC=∠DEC,
∴,
∴△BDE的周長是,
故選C.
考點:本題考查的是等邊三角形的性質,勾股定理
點評:解答本題的關鍵是熟練掌握等腰三角形的三線合一的性質:等腰三角形的頂角平分線,底邊上的中線,底邊上的高互相重合.
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源: 題型:
10 |
3 |
10 |
3 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com