如圖,在10×10的正方形網(wǎng)格中(每個小正方形的邊長都為1個單位),△ABC的三個頂點都在格點上.
(1)畫出將△ABC向右平移3個單位,再向上平移1個單位所得的△A′B′C′;(友情提醒:對應(yīng)點的字母不要標(biāo)錯!)
(2)建立如圖的直角坐標(biāo)系,請標(biāo)出△A′B′C′的外接圓的圓心P的位置,并寫出圓心P的坐標(biāo):P(______,______);
(3)將△ABC繞BC旋轉(zhuǎn)一周,求所得幾何體的全面積.(結(jié)果保留π)

【答案】分析:(1)根據(jù)網(wǎng)格結(jié)構(gòu)找出點A′、B′、C′的位置,然后順次連接即可;
(2)根據(jù)網(wǎng)格結(jié)構(gòu),作出邊BC、AB的垂直平分線,交點即為所求的外接圓的圓心P,然后寫出點的坐標(biāo)即可;
(3)利用勾股定理求出AB、AC的長度,再根據(jù)圓錐的側(cè)面積等于=πLR(L是圓錐的側(cè)長,R是圓錐半徑) 進行計算即可得解.
解答:解:(1)如圖所示,△A′B′C′即為所求作的三角形;

(2)如圖所示,點P為△A′B′C′的外接圓的圓心,坐標(biāo)為(8,4);

(3)根據(jù)勾股定理,AB==2,
AC==2
△ABC繞BC旋轉(zhuǎn)一周,所得幾何體的為以AC為母線的圓錐挖去以AB為母線的圓錐,
全面積=π•2•2+π•2•2=4π+4π.
點評:本題考查了利用平移變換作圖,圓錐的側(cè)面面積計算,以及三角形的外接圓圓心的確定,熟練掌握網(wǎng)格結(jié)構(gòu)準(zhǔn)確找出對應(yīng)點的位置是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2013年浙江省湖州市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

如圖,在10×10的網(wǎng)格中,每個小方格都是邊長為1的小正方形,每個小正方形的頂點稱為格點.若拋物線經(jīng)過圖中的三個格點,則以這三個格點為頂點的三角形稱為拋物線的“內(nèi)接格點三角形”.以O(shè)為坐標(biāo)原點建立如圖所示的平面直角坐標(biāo)系,若拋物線與網(wǎng)格對角線OB的兩個交點之間的距離為,且這兩個交點與拋物線的頂點是拋物線的內(nèi)接格點三角形的三個頂點,則滿足上述條件且對稱軸平行于y軸的拋物線條數(shù)是( )
A.16
B.15
C.14
D.13

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年遼寧省沈陽市和平區(qū)中考數(shù)學(xué)監(jiān)測卷(二)(解析版) 題型:解答題

如圖,在10×10的正方形網(wǎng)格中△ABC與△DEF的頂點,都在邊長為1 的小正方形頂點上,且點A與原點重合.
(1)畫出△ABC關(guān)于點B為對稱中心的中心對稱圖形△A′BC′,畫出將△DEF向右平移6個單位且向上平移2個單位的△D′E′F′;
(2)求經(jīng)過A、B、C三點的二次函數(shù)關(guān)系式,并求出頂點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009-2010學(xué)年浙江省臺州市溫嶺市溫中實驗學(xué)校九年級(上)第二次段考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,在10×6的網(wǎng)格圖中(每個小正方形的邊長均為1個單位長).⊙A半徑為2,⊙B半徑為1,需使⊙A與靜止的⊙B相切,那么⊙A由圖示的位置需向左平移多少個單位長?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年湖北省宜昌市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

如圖,在10×6的網(wǎng)格中,每個小方格的邊長都是1個單位,將△ABC平移到△DEF的位置,下面正確的平移步驟是( )

A.先把△ABC向左平移5個單位,再向下平移2個單位
B.先把△ABC向右平移5個單位,再向下平移2個單位
C.先把△ABC向左平移5個單位,再向上平移2個單位
D.先把△ABC向右平移5個單位,再向上平移2個單位

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年黑龍江省哈爾濱市中考數(shù)學(xué)模擬試卷(一)(解析版) 題型:解答題

如圖,在10×10的正方形網(wǎng)格中,每個小正方形的邊長均為1個單位.
(1)作△ABC關(guān)于點P的對稱圖形△A′B′C′;
(2)再把△A′B′C′,繞著C'逆時針旋轉(zhuǎn)90°,得到△A″B″C′,請你畫出△A′B′C′和△A″B″C′.(不要求寫畫法)

查看答案和解析>>

同步練習(xí)冊答案