如果方程2(x-3)2=72,那么,這個(gè)一元二次方程的兩根是   
【答案】分析:觀察發(fā)現(xiàn)方程的左邊是一個(gè)完全平方式,把左邊x-3看成一個(gè)整體,先系數(shù)化1,求出x-3的值,再進(jìn)一步求x.
解答:解:系數(shù)化為1得(x-3)2=36,開(kāi)方得x-3=±6,即x1=9,x2=-3.
點(diǎn)評(píng):(1)用直接開(kāi)方法求一元二次方程的解的類型有:x2=a(a≥0);ax2=b(a,b同號(hào)且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同號(hào)且a≠0).法則:要把方程化為“左平方,右常數(shù),先把系數(shù)化為1,再開(kāi)平方取正負(fù),分開(kāi)求得方程解”.
(2)運(yùn)用整體思想,會(huì)把被開(kāi)方數(shù)看成整體.
(3)用直接開(kāi)方法求一元二次方程的解,要仔細(xì)觀察方程的特點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的方程a2x2+(2a-1)x+1=0有兩個(gè)不相等的實(shí)數(shù)根x1,x2.(1)求a的取值范圍;(2)是否存在實(shí)數(shù)a,使方程的兩個(gè)實(shí)數(shù)根互為相反數(shù)如果存在,求出a的值;如果不存在,說(shuō)明理由.
解:(1)根據(jù)題意,得△=(2a-1)2-4a2>0,解得a<
1
4

∴當(dāng)a<
1
4
時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根.
(2)存在,如果方程的兩個(gè)實(shí)數(shù)根x1,x2互為相反數(shù),則x1+x2=-
2a-1
a
=0  ①,
解得a=
1
2
,經(jīng)檢驗(yàn),a=
1
2
是方程①的根.
∴當(dāng)a=
1
2
時(shí),方程的兩個(gè)實(shí)數(shù)根x1與x2互為相反數(shù).
上述解答過(guò)程是否有錯(cuò)誤?如果有,請(qǐng)指出錯(cuò)誤之處,并解答.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如果方程x2-(2m-1)x+m2=0有兩個(gè)實(shí)數(shù)根,那么m的取值范圍是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如果方程3x-4=0與方程3x+4k=12的解相同,則k=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如果方程x2-(m-1)x+
1
4
=0
有兩個(gè)相等的實(shí)數(shù)根,則m=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如果方程2x2a-1-3y3a+2b=10是一個(gè)二元一次方程,那么數(shù)a=
1
1
,b=
-1
-1

查看答案和解析>>

同步練習(xí)冊(cè)答案