【題目】如圖,等腰RtABC中,∠BAC90°,ADBC于點(diǎn)D,∠ABC的平分線分別交ACADE、F兩點(diǎn),MEF的中點(diǎn),AM的延長(zhǎng)線交BC于點(diǎn)N,連接DM,下列結(jié)論:①AEAF;②DFDN;③ANBF;④ENNC;⑤AENC,其中正確結(jié)論的個(gè)數(shù)是( 。

A. 2個(gè)B. 3個(gè)C. 4個(gè)D. 5個(gè)

【答案】D

【解析】

①根據(jù)等腰直角三角形的性質(zhì)及角平分線的定義求得,繼而可得∠AFE=AEB=67.5°,即可判斷①;

②求出BD=AD,∠DBF=DAN,∠BDF=ADN,證△DFB≌△DAN,即可判斷②;

③根據(jù)A、BD、M四點(diǎn)共圓求出∠ADM=22.5°,根據(jù)三角形外角性質(zhì)求出∠DNM,求出∠MDN=DNM,即可判斷③;

④求出∠BMD=45°=BMN,即可判斷④;

⑤證明△AFB≌△CNA可得AF=CN,由AF=AE,即可判斷⑤.

解:∵等腰RtABC中,∠BAC90°ADBC,

∴∠BAD=∠CAD=∠C45°

∵∵BE平分∠ABC,

∴∠ABE=∠CBEABC22.5°

∴∠AEF=∠CBE+C22.5°+45°67.5°,∠AFE=∠FBA+BAF22.5°+45°67.5°

∴∠AEF=∠AFE,

AEAF

故①正確;

∵∠BAC90°,ACABADBC,

∴∠ABC=∠C45°,ADBDCD,∠ADN=∠ADB90°,

∴∠BAD45°=∠CAD

BE平分∠ABC,

∴∠ABE=∠CBEABC22.5°

∴∠BFD=∠AEB90°22.5°67.5°,

AFE=∠BFD=∠AEB67.5°

AFAE,AMBE,

∴∠AMF=∠AME90°

∴∠DAN90°67.5°22.5°=∠MBN,

在△FBD和△NAD

∴△FBD≌△NADASA),

DFDN,ANBF,

∴②③正確;

連接EN

AEAF,FMEM,

AMEF,

∴∠BMA=∠BMN90°

BMBM,∠MBA=∠MBN,

∴△MBA≌△MBN,

AMMN

BE垂直平分線段AN,

ABBN,EAEN

BEBE,

∴△ABE≌△NBE,

∴∠ENB=∠EAB90°

ENNC

故④正確;

在△AFB和△CNA中,

∴△AFB≌△CANASA),

AFCN

AFAE,

AECN,

故⑤正確;

其中正確結(jié)論的個(gè)數(shù)是:①②③④⑤,共5個(gè);

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了美化環(huán)境,建設(shè)宜居成都,我市準(zhǔn)備在一個(gè)廣場(chǎng)上種植甲、乙兩種花卉.經(jīng)市場(chǎng)調(diào)查,甲種花卉的種植費(fèi)用(元)與種植面積之間的函數(shù)關(guān)系如圖所示,乙種花卉的種植費(fèi)用為每平方米100.

(1)直接寫(xiě)出當(dāng)時(shí),的函數(shù)關(guān)系式;

(2)廣場(chǎng)上甲、乙兩種花卉的種植面積共,若甲種花卉的種植面積不少于,且不超過(guò)乙種花卉種植面積的2倍,那么應(yīng)該怎樣分配甲、乙兩種花卉的種植面積才能使種植費(fèi)用最少?最少總費(fèi)用為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用正方形硬紙板做三棱柱盒子,每個(gè)盒子由3個(gè)矩形側(cè)面和2個(gè)正三角形底面組成。硬紙板以如圖兩種方式裁剪(裁剪后邊角料不再利用)

A方法:剪6個(gè)側(cè)面; B方法:剪4個(gè)側(cè)面和5個(gè)底面。

現(xiàn)有19張硬紙板,裁剪時(shí)張用A方法,其余用B方法。

1)用的代數(shù)式分別表示裁剪出的側(cè)面和底面的個(gè)數(shù);

2)若裁剪出的側(cè)面和底面恰好全部用完,問(wèn)能做多少個(gè)盒子?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在下列條件中,不能作為判斷ABD≌△BAC的條件是( )

A. D=C,BAD=ABC B. BAD=ABC,ABD=BAC

C. BD=AC,BAD=ABC D. AD=BC,BD=AC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,ABCD,直線EF分別交AB、CD于點(diǎn)E、F,EG平分∠AEF,FH平分∠EFD.求證:EGFH

請(qǐng)完成以下證明過(guò)程:

證明:∵ABCD(已知)

∴∠AEF=EFD__________________

EG平分∠AEF,FH平分∠EFD__________

∴∠___AEF,___= EFD____________

∴∠_____=______(等量代換)

EGFH__________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖已知四邊形ABCD,D=100°,AC平分BCD,ACB=40°,BAC=70°.

(1)ADBC平行嗎?試寫(xiě)出推理過(guò)程;

(2)DACEAD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)銷售一種學(xué)生用計(jì)算器,進(jìn)價(jià)為每臺(tái)20元,售價(jià)為每臺(tái)30元時(shí),每周可賣(mài)160臺(tái),如果每臺(tái)售價(jià)每上漲2元,每周就會(huì)少賣(mài)20臺(tái),但廠家規(guī)定最高每臺(tái)售價(jià)不能超過(guò)33元,當(dāng)計(jì)算器定價(jià)為多少元時(shí),商場(chǎng)每周的利潤(rùn)恰好為1680元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)三位數(shù),百位數(shù)是,十位數(shù)是,個(gè)位數(shù)是,我們可以記作, 表示,例如,仿照上面的例子,

1可以用 表示;

2可以用 表示;

3)歐陽(yáng)老師給4為同學(xué)玩一個(gè)數(shù)字游戲,先請(qǐng)A同學(xué)心里想一個(gè)三位數(shù),并把這個(gè)三位數(shù)在紙上寫(xiě)兩遍構(gòu)成一個(gè)六位數(shù)交給B同學(xué),如他心里想的是789,那么他在紙上寫(xiě)的就是789789,B把這個(gè)六位數(shù)除以7,得到的商寫(xiě)在另一張紙上并交給C同學(xué),C同學(xué)把B同學(xué)給他的數(shù)字除以11,得到的商寫(xiě)在另一張紙上并交給D同學(xué),D同學(xué)把C同學(xué)給他的數(shù)字除以13,得到的商寫(xiě)在另一張紙上,并交還給A同學(xué),還給同學(xué)的數(shù)字和他剛開(kāi)始想的數(shù)字有什么關(guān)系?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,BD是△ABC的角平分線,它的垂直平分線分別交AB,BD,BC于點(diǎn)E,F(xiàn),G,連接ED,DG.

(1)請(qǐng)判斷四邊形EBGD的形狀,并說(shuō)明理由;

(2)若∠ABC=30°,∠C=45°,ED=2,點(diǎn)H是BD上的一個(gè)動(dòng)點(diǎn),求HG+HC的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案