【題目】如圖,點 E AD 的延長線上,下列條件中能判斷 ABCD 的是(

A. 1=4B. 2=3C. C=CDED. C+CDA=180°

【答案】B

【解析】

結(jié)合圖形分析兩角的位置關(guān)系,根據(jù)平行線的判定方法判斷.

A、∠1和∠4AD、BCBD所截得到的一對內(nèi)錯角,∴當(dāng)∠1=4時,可得ADBC,故A不正確;

B、∠2和∠3AB、CDBD所截得到的一對內(nèi)錯角,∴當(dāng)∠2=3時,可得ABCD,故B正確;

C、∠C和∠CDEAD、BCCD所截得到的一對內(nèi)錯角,∴當(dāng)∠C=CDE時,可得ADBC,故C不正確;

D、∠C和∠ADCAD、BCCD所截得到的一對同旁內(nèi)角,∴當(dāng)∠C+ADC=180°時,可得ADBC,故D不正確;

故選B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知長方形相鄰兩邊的長分別是xcm3cm,設(shè)長方形的面積為ycm2

1)試寫出長方形的面積yx之間的關(guān)系式;

2)利用(1)中的關(guān)系式,求當(dāng)x5cm時長方形的面積;

3)當(dāng)x的值由4cm變化到12cm時,長方形的面積由   cm2變化到   cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在ABC中,AB=AC,BAC=120°,AC的垂直平分線EF交AC于點E,交BC于點F.試探索BF與CF的數(shù)量關(guān)系,寫出你的結(jié)論并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點A,B,C,D,E,F(xiàn)是邊長為1的正六邊形的頂點,連接任意兩點均可得到一條線段.在連接兩點所得的所有線段中任取一條線段,取到長度為 的線段的概率為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某服裝廠生產(chǎn)一批男襯衫,經(jīng)過抽樣調(diào)查60名中年男子,得知所需襯衫型號的人數(shù)如表所示.求出它的中位數(shù)是74,眾數(shù)是76,平均數(shù)是74.6,下列說法正確的是(  )

A. 所需78號人數(shù)太少,78號的可以不生產(chǎn)

B. 這批襯衫可以一律按身長是74.6這個平均數(shù)生產(chǎn)

C. 因為眾數(shù)是76,故76號的生產(chǎn)量要占第一位

D. 因為中位數(shù)是74,故74號的生產(chǎn)量要占第一位

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市經(jīng)濟技術(shù)開發(fā)區(qū)某智能手機有限公司接到生產(chǎn)300萬部智能手機的訂單,為了盡快交貨,增開了一條生產(chǎn)線,實際每月生產(chǎn)能力比原計劃提高了50%,結(jié)果比原計劃提前5個月完成交貨,求每月實際生產(chǎn)智能手機多少萬部.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)先化簡,再求值:(a+÷a+2),請從﹣1,0,1中選取一個作為a的值代入求值.

2)解方程:1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,兩條中線BE、CD相交于點O,則SADE:SCOE=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司開發(fā)的960件新產(chǎn)品必須加工后才能投放市場,現(xiàn)有甲、乙兩個工廠都想加工這批產(chǎn)品,已知甲工廠單獨加工48件產(chǎn)品的時間與乙工廠單獨加工72件產(chǎn)品的時間相等,而且乙工廠每天比甲工廠多加工8件產(chǎn)品,在加工過程中,公司需每天支付50元勞務(wù)費請工程師到廠進行技術(shù)指導(dǎo).

(1)甲、乙兩個工廠每天各能加工多少件產(chǎn)品?

(2)該公司要選擇既省時又省錢的工廠加工產(chǎn)品,乙工廠預(yù)計甲工廠將向公司報加工費用為每天800元,請問:乙工廠向公司報加工費用每天最多為多少元時,有望加工這批產(chǎn)品?

查看答案和解析>>

同步練習(xí)冊答案