精英家教網(wǎng)在平面直角坐標系中,點O為坐標原點,點A的坐標為(3,4),點B的坐標為(7,0),D,E分別是線段AO,AB上的點,以DE所在直線為對稱軸,把△ADE作軸對稱變換得△A′DE,點A′恰好在x軸上,若△OA′D與△OAB相似,則OA′的長為
 
.(結(jié)果保留2個有效數(shù)字)
分析:由點A的坐標為(3,4),點B的坐標為(7,0),可得OA=5,OB=7,AB=4
2
,然后分別從△OA′D∽△OAB與△OA′D∽△OBA去分析,根據(jù)相似三角形的對應邊成比例,即可取得答案.
解答:解:∵點A的坐標為(3,4),點B的坐標為(7,0),
∴OA=5,OB=7,AB=4
2
,
若△OA′D∽△OAB,
OA′
OA
=
OD
OB
=
A′D
AB
,
設AD=x,
則OD=5-x,A′D=x,
x
4
2
=
5-x
7
,
解得:x≈2.2,
OA′
5
=
2.8
7
,
∴OA′=2.0;
若△OA′D∽△OBA,
OA′
OB
=
OD
OA
=
A′D
AB
,
同理:可得:OA′≈3.3.
故答案為:2.0或3.3.
點評:此題考查了相似三角形的性質(zhì)與折疊的知識.此題綜合性較強,難度較大,注意數(shù)形結(jié)合與方程思想的應用,小心別漏解.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

28、在平面直角坐標系中,點P到x軸的距離為8,到y(tǒng)軸的距離為6,且點P在第二象限,則點P坐標為
(-6,8)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

10、在平面直角坐標系中,點P1(a,-3)與點P2(4,b)關(guān)于y軸對稱,則a+b=
-7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在平面直角坐標系中,有A(2,3)、B(3,2)兩點.
(1)請再添加一點C,求出圖象經(jīng)過A、B、C三點的函數(shù)關(guān)系式.
(2)反思第(1)小問,考慮有沒有更簡捷的解題策略?請說出你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標系中,開口向下的拋物線與x軸交于A、B兩點,D是拋物線的頂點,O為精英家教網(wǎng)坐標原點.A、B兩點的橫坐標分別是方程x2-4x-12=0的兩根,且cos∠DAB=
2
2

(1)求拋物線的函數(shù)解析式;
(2)作AC⊥AD,AC交拋物線于點C,求點C的坐標及直線AC的函數(shù)解析式;
(3)在(2)的條件下,在x軸上方的拋物線上是否存在一點P,使△APC的面積最大?如果存在,請求出點P的坐標和△APC的最大面積;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

18、在平面直角坐標系中,把一個圖形先繞著原點順時針旋轉(zhuǎn)的角度為θ,再以原點為位似中心,相似比為k得到一個新的圖形,我們把這個過程記為【θ,k】變換.例如,把圖中的△ABC先繞著原點O順時針旋轉(zhuǎn)的角度為90°,再以原點為位似中心,相似比為2得到一個新的圖形△A1B1C1,可以把這個過程記為【90°,2】變換.
(1)在圖中畫出所有符合要求的△A1B1C1;
(2)若△OMN的頂點坐標分別為O(0,0)、M(2,4)、N(6,2),把△OMN經(jīng)過【θ,k】變換后得到△O′M′N′,若點M的對應點M′的坐標為(-1,-2),則θ=
0°(或360°的整數(shù)倍)
,k=
2

查看答案和解析>>

同步練習冊答案