【題目】解方程

(1)

(2)

【答案】(1);(2)

【解析】

(1)觀察可得二次項系數(shù)為1,故把常數(shù)項移項到右邊,兩邊都加上一次項系數(shù)一半的平方,即加上4,左邊化為完全平方式,右邊是非負常數(shù),開方轉(zhuǎn)化為兩個一元一次方程,求出兩方程的解即可得到原方程的解;
(2)利用十字相乘法把方程左邊的多項式分解因式,然后根據(jù)兩數(shù)積為0,兩數(shù)至少有一個為0化為兩個一元一次方程,求出兩方程的解即可得到原方程的解.

解:(1)x2-4x-2=0,

移項得:x2-4x=2,

兩邊都加上4得:(x-2)2=6,

開方得:x-2=x-2=-

∴x1=2+,x2=2-

(2)3x2-2x-5=0,

因式分解得:(3x-5)(x+1)=0,

可化為:3x-5=0x+1=0,

∴x1=,x2=-1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某片果園有果樹80棵,現(xiàn)準備多種一些果樹提高果園產(chǎn)量,但是如果多種樹,那么樹之間的距離和每棵樹所受光照就會減少,單棵樹的產(chǎn)量隨之降低,若該果園每棵果樹產(chǎn)果y千克,增種果樹x棵,它們之間的函數(shù)關(guān)系如圖所示.

(1)求y與x之間的函數(shù)解析式;

(2)在投入成本最低的情況下,增種果樹多少棵時,果園可以收獲果實6750千克?

(3)當增種果樹多少棵時,果園的總產(chǎn)量w(千克)最大?最大產(chǎn)量是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠C=90°,點PAC邊上的一點,延長BP至點D,使得AD=AP,當ADAB時,過DDEACE,AB-BC=4,AC=8,則ABP面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點,在反比例函數(shù)圖象上,軸于點,軸于點,

(1),的值并寫出反比例函數(shù)的表達式;

(2)連接,是線段上一點,過點軸的垂線,交反比例函數(shù)圖象于點,若,求出點的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】莫小貝在圖1中畫出△ABC,其頂點A,B,C都是格點,同時構(gòu)造正方形BDEF,使它的頂點都在格點上,且它的邊DE,EF分別經(jīng)過點C,A,她借助此圖求出了△ABC 的面積.

(1)莫小貝所畫的△ABC 的三邊長分別是AB=_______,BC=______,AC=______;△ABC 的面積為________.

(2)已知△ABC ,AB=,BC=,AC=請你根據(jù)莫小貝的思路,在圖2中畫出△ABC ,并直接寫出△ABC的面積_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:AB是O的直徑,弦CDAB于點G,E是直線AB上一動點不與點A、B、G重合,直線DE交O于點F,直線CF交直線AB于點P設(shè)O的半徑為r

1如圖1,當點E在直徑AB上時,試證明:

2當點E在直徑AB或BA的延長線上時,以如圖2點E的位置為例,請你畫出符合題意的圖形,標注上字母,1中的結(jié)論是否成立?請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一面墻上有一個矩形的門洞,現(xiàn)要將它改為一個圓弧形的門洞,圓弧所在的圓外接矩形,已知矩形的高AC=2米,寬CD=米.

(1)求此圓形門洞的半徑;

(2)求要打掉墻體的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,正方形ABPD的邊長為3,將邊DP繞點P順時針旋轉(zhuǎn)90°PC,E、F分別為線段DP、CP上兩個動點(不與D、P、C重合),且DE=CF,連接BE并延長分別交DF、DCH、G.

(1)①求證:△BPE≌△DPF,②判斷BGDF位置關(guān)系并說明理由;

(2)當PE的長度為多少時,四邊形DEFG為菱形并說明理由;

(3)連接AH,在點E、F運動的過程中,∠AHB的大小是否發(fā)生改變?若改變,請說出是如何變化的;若不改變,請求出∠AHB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有長為30m的籬笆,一面利用墻(墻的最大可用長度為10m),圍成中間隔有一道籬笆(平行于AB)的矩形花圃設(shè)花圃的一邊AB為xm,面積為ym2

(1)求y與x的函數(shù)關(guān)系式;

(2)如果要圍成面積為63m2的花圃,AB的長是多少?

(3)能圍成比63m2更大的花圃嗎?如果能,請求出最大面積;如果不能,請說明理由

查看答案和解析>>

同步練習(xí)冊答案