【題目】列方程解應(yīng)用題
根據(jù)城市規(guī)劃設(shè)計(jì),某市工程隊(duì)準(zhǔn)備為該城市修建一條長4800米的公路.鋪設(shè)600米后,為了盡量減少施工對城市交通造成的影響,該工程隊(duì)增加人力,實(shí)際每天修建公路的長度是原計(jì)劃的2倍,結(jié)果9天完成任務(wù),該工程隊(duì)原計(jì)劃每天鋪設(shè)公路多少米?
【答案】解:設(shè)原計(jì)劃每天鋪設(shè)公路x米,根據(jù)題意,得……………………1分
. ……………………3分
去分母,得 1200+4200=18x(或18x=5400)
解得. ……………………4分
經(jīng)檢驗(yàn), 是原方程的解且符合題意. ……………………5分
答:原計(jì)劃每天鋪設(shè)公路300米.
【解析】試題分析:設(shè)原計(jì)劃每天鋪設(shè)公路x米,根據(jù)實(shí)際每天修建公路的長度是原計(jì)劃的2倍,結(jié)果9天完成任務(wù),以時(shí)間做為等量關(guān)系可列方程求解.
試題解析:設(shè)原計(jì)劃每天鋪設(shè)公路x米,根據(jù)題意,得(1分)
去分母,得1200+4200=18x(或18x=5400)
解得x=300.(4分)
經(jīng)檢驗(yàn),x=300是原方程的解且符合題意.(5分)
答:原計(jì)劃每天鋪設(shè)公路300米.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1、圖2分別是的網(wǎng)格,網(wǎng)格中每個(gè)小正方形的邊長均為1,線段的端點(diǎn)在小正方形的頂點(diǎn)上,請?jiān)趫D1、圖2中各畫一個(gè)圖形,分別滿足以下要求:
(1)在圖1中畫一個(gè)以線段為一邊且周長為的平行四邊形,所畫圖形的各頂點(diǎn)必須在小正方形的頂點(diǎn)上.
(2)在圖2中畫一個(gè)以線段為一邊的等腰鈍角三角形,所畫等腰三角形的各頂點(diǎn)必須在小正方形的頂點(diǎn)上,并直接寫出該等腰三角形的周長是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(閱讀理解)
在解方程組或求代數(shù)式的值時(shí),可以用整體代入或整體求值的方法,化難為易.
(1)解方程組
(2)已知,求x+y+z的值
解:(1)把②代入①得:x+2×1=3.解得:x=1.
把x=1代入②得:y=0.
所以方程組的解為,
(2)①×2得:8x+6y+4z=20.③
②﹣③得:x+y+z=5.
(類比遷移)
(1)若,則x+2y+3z= .
(2)解方程組
(實(shí)際應(yīng)用)
打折前,買39件A商品,21件B商品用了1080元.打折后,買52件A商品,28件B商品用了1152元,比不打折少花了多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,(1)正方形ABCD及等腰Rt△AEF有公共頂點(diǎn)A,∠EAF=90°, 連接BE、DF.將Rt△AEF繞點(diǎn)A旋轉(zhuǎn),在旋轉(zhuǎn)過程中,BE、DF具有怎樣的數(shù)量關(guān)系和位置關(guān)系?結(jié)合圖(1)給予證明;
(2)將(1)中的正方形ABCD變?yōu)榫匦?/span>ABCD,等腰Rt△AEF變?yōu)?/span>Rt△AEF,且AD=kAB,AF=kAE,其他條件不變.(1)中的結(jié)論是否發(fā)生變化?結(jié)合圖(2)說明理由;
(3)將(2)中的矩形ABCD變?yōu)槠叫兴倪呅?/span>ABCD,將Rt△AEF變?yōu)?/span>△AEF,且∠BAD=∠EAF=,其他條件不變.(2)中的結(jié)論是否發(fā)生變化?結(jié)合圖(3),如果不變,直接寫出結(jié)論;如果變化,直接用k表示出線段BE、DF的數(shù)量關(guān)系,用表示出直線BE、DF形成的銳角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD中,E為對角線BD的延長線上一點(diǎn).
(1)求證:AE=CE.
(2)若BC=6,AE=10,∠BAE=120,求BE的長,并直接寫出DE的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線yxb與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,與直線y=x交于點(diǎn)E,點(diǎn)E的橫坐標(biāo)為3.
(1)求點(diǎn)A的坐標(biāo).
(2)在x軸上有一點(diǎn)P(m,0),過點(diǎn)P作x軸的垂線,與直線yxb交于點(diǎn)C,與直線y=x交于點(diǎn)D.若CD≥5,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在給定的一張平行四邊形紙片上按如下操作:連結(jié)AC,作AC的垂直平分線MN分別交AD、AC、BC于M、O、N,連結(jié)AN,CM,則四邊形ANCM是( 。
A. 矩形 B. 菱形 C. 正方形 D. 無法判斷
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:
關(guān)于的方程:
的解為: ,
(可變形為)的解為: ,
的解為: ,
的解為: ,
…………
根據(jù)以上材料解答下列問題:
(1)①方程的解為 .
②方程的解為 .
(2)解關(guān)于方程:
① ()
②()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線交 y軸于點(diǎn)為A,頂點(diǎn)為D,對稱軸與x軸交于點(diǎn)H.
(1)求頂點(diǎn)D的坐標(biāo)(用含m的代數(shù)式表示);
(2)當(dāng)拋物線過點(diǎn)(1,-2),且不經(jīng)過第一象限時(shí),平移此拋物線到拋物線的位置,求平移的方向和距離;
(3)當(dāng)拋物線頂點(diǎn)D在第二象限時(shí),如果∠ADH=∠AHO,求m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com