(2009•門頭溝區(qū)一模)在平面直角坐標(biāo)系xOy中,拋物線y=-x2+bx+c與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,頂點(diǎn)為D,且點(diǎn)B的坐標(biāo)為(1,0),點(diǎn)C的坐標(biāo)為(0,3).
(1)求拋物線及直線AC的解析式;
(2)E、F是線段AC上的兩點(diǎn),且∠AEO=∠ABC,過點(diǎn)F作與y軸平行的直線交拋物線于點(diǎn)M,交x軸于點(diǎn)N.當(dāng)MF=DE時(shí),在x軸上是否存在點(diǎn)P,使得以點(diǎn)P、A、F、M為頂點(diǎn)的四邊形是梯形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;
(3)若點(diǎn)Q是位于拋物線對(duì)稱軸左側(cè)圖象上的一點(diǎn),試比較銳角∠QCO與∠BCO的大小(直接寫出結(jié)果,不要求寫出求解過程,但要寫出此時(shí)點(diǎn)Q的橫坐標(biāo)x的取值范圍).
【答案】分析:(1)利用待定系數(shù)法,把已知坐標(biāo)代入求出拋物線的解析式.設(shè)直線AC的解析式為y=kx+n,爸已知坐標(biāo)代入求出直線AC的解析式.
(2)首先證明△AEO∽△ABC,利用線段比求出AE的長.然后作EH⊥y軸于H,易得E點(diǎn)坐標(biāo).設(shè)F點(diǎn)的坐標(biāo)為(x,x+3),M點(diǎn)的坐標(biāo)為(x,-x2-2 x+3),求出點(diǎn)P的坐標(biāo),然后根據(jù)MP∥FA所推出的線段比求出PN的值從而求出P點(diǎn)坐標(biāo).
(3)份額根據(jù)x的取值范圍不同求解.
解答:解:(1)∵拋物線y=-x2+bx+c過B(1,0)、C(0,3)兩點(diǎn)

解得
∴拋物線的解析式為y=-x2-2x+3
由y=-x2-2x+3可得A點(diǎn)坐標(biāo)為(-3,0)
設(shè)直線AC的解析式為y=kx+n,

解得
∴直線AC的解析式為y=x+3.

(2)∵OA=OC=3,OB=1
∴△AOC是等腰直角三角形,AC=,AB=4
∴∠ECO=45°
∵∠AEO=∠ABC,∠EAO=∠BAC
∴△AEO∽△ABC


∴AE=
∴CE=AC-AE=-=
過點(diǎn)E作EH⊥y軸于H
可得EH=CH=1,OH=2
∴E點(diǎn)的坐標(biāo)為(-1,2)
∵拋物線y=-x2-2x+3頂點(diǎn)D的坐標(biāo)為(-1,4)
∴ED=2
∴MF=ED=2
∵F在線段AC上,M在拋物線y=-x2-2x+3上
∴設(shè)F點(diǎn)的坐標(biāo)為(x,x+3),M點(diǎn)的坐標(biāo)為(x,-x2-2 x+3)
∴-x2-2 x+3-(x+3)=2
解得x1=-2,x2=-1(不合題意,舍去)
∴F點(diǎn)的坐標(biāo)為(-2,1)
∴FN=NA=1
在x軸上存在點(diǎn)P,使得以點(diǎn)P、A、F、M為頂點(diǎn)的四邊形是梯形
當(dāng)FP∥MA時(shí),可得


∴P點(diǎn)的坐標(biāo)為(-,0)
當(dāng)MP∥FA時(shí),可得
∴PN=3
∴P點(diǎn)的坐標(biāo)為(-5,0)
∴在x軸上存在點(diǎn)P使得以點(diǎn)P、A、F、M為頂點(diǎn)的四邊形是梯形
點(diǎn)P的坐標(biāo)為(-,0)或(-5,0).

(3)當(dāng)x<-5時(shí),銳角∠QCO<∠BCO
當(dāng)x=-5時(shí),銳角∠QCO=∠BCO
當(dāng)-5<x<-1時(shí),銳角∠QCO>∠BCO.
點(diǎn)評(píng):本題考查的是二次函數(shù)的有關(guān)知識(shí)以及相似三角形的判定定理,難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2009年北京市門頭溝區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2009•門頭溝區(qū)一模)在平面直角坐標(biāo)系xOy中,拋物線y=-x2+bx+c與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,頂點(diǎn)為D,且點(diǎn)B的坐標(biāo)為(1,0),點(diǎn)C的坐標(biāo)為(0,3).
(1)求拋物線及直線AC的解析式;
(2)E、F是線段AC上的兩點(diǎn),且∠AEO=∠ABC,過點(diǎn)F作與y軸平行的直線交拋物線于點(diǎn)M,交x軸于點(diǎn)N.當(dāng)MF=DE時(shí),在x軸上是否存在點(diǎn)P,使得以點(diǎn)P、A、F、M為頂點(diǎn)的四邊形是梯形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;
(3)若點(diǎn)Q是位于拋物線對(duì)稱軸左側(cè)圖象上的一點(diǎn),試比較銳角∠QCO與∠BCO的大小(直接寫出結(jié)果,不要求寫出求解過程,但要寫出此時(shí)點(diǎn)Q的橫坐標(biāo)x的取值范圍).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年北京市門頭溝區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2009•門頭溝區(qū)一模)已知一次函數(shù)y=kx+b的圖象與反比例函數(shù)的圖象交于A(-2,1)B(1,n)兩點(diǎn).
(1)求反比例函數(shù)的解析式和B點(diǎn)的坐標(biāo);
(2)在同一直角坐標(biāo)系中畫出這兩個(gè)函數(shù)圖象的示意圖,并觀察圖象回答:當(dāng)x為何值時(shí),一次函數(shù)的值大于反比例函數(shù)的值;
(3)直接寫出將一次函數(shù)的圖象向右平移1個(gè)單位長度后所得函數(shù)圖象的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年北京市門頭溝區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2009•門頭溝區(qū)二模)已知二次函數(shù)y=2x2-4x+5,
(1)將二次函數(shù)的解析式化為y=a(x-h)2+k的形式;
(2)將二次函數(shù)的圖象先向右平移2個(gè)單位長度,再向下平移1個(gè)單位長度后,所得二次函數(shù)圖象的頂點(diǎn)為A,請(qǐng)你直接寫出點(diǎn)A的坐標(biāo);
(3)若反比例函數(shù)y=的圖象過點(diǎn)A,求反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年北京市門頭溝區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2009•門頭溝區(qū)一模)已知:如圖,在梯形ABCD中,AD∥BC,∠D=90°,∠B=60°,CD=,BC=9,cos∠DAE=,求AE的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案