【題目】已知如圖,拋物線軸交于點A和點C(2,0),與 軸交于點D,將△DOC繞點O逆時針旋轉90°后,點D恰好與點A重合,點C與點B重合.

(1)直接寫出點A和點B的坐標;

(2)求的值;

(3)已知點E是該拋物線的頂點,求證:AB⊥EB.

【答案】(1)A(-6,0)、B(0,2);(2),;(3)E(-2,8) .

【解析】

試題

(1)由題意易得點D的坐標為(0,6),結合AOB是由△DOC繞點O逆時針旋轉90°得到的,即可得到OA=6,OB=OC=2,由此即可得到點A和點B的坐標;

(2)將點A和點C的坐標代入列出關于的二元一次方程組,解方程組即可求得的值;

(3)由(2)中所得的值可得二次函數(shù)的解析式,把解析式配方即可求得點E的坐標,結合點A和點B的坐標即可求得AE2、AB2、BE2的值,這樣由勾股定理的逆定理即可得到∠ABE=90°,從而可得AB⊥BE.

試題解析

(1)∵在中,當時,,

D的坐標為(0,6),

∵△AOB是由△DOC繞點O逆時針旋轉90°得到的,

∴OA=OD=6,OB=OC=2,

∴點A的坐標為(-6,0),點B的坐標為(0,2);

(2)∵點A(-6,0)和點C(2,0)在的圖象上,

,解得:

(3)如圖,連接AE,

由(2)可知

,

E的坐標為(-2,8),

∵點A(-6,0),點B(0,2),

∴AE2=,AB2=,BE2=,

∴AE2=AB2+BE2

∴∠ABE=90°,

∴AB⊥EB.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某車行去年A型車的銷售總額為6萬元,今年每輛車的售價比去年減少400元.若賣出的數(shù)量相同,銷售總額將比去年減少20%.

(1)求今年A型車每輛車的售價.

(2)該車行計劃新進一批A型車和B型車共45輛,已知A、B型車的進貨價格分別是1100元,1400元,今年B型車的銷售價格是2000元,要求B型車的進貨數(shù)量不超過A型車數(shù)量的兩倍,應如何進貨才能使這批車獲得最大利潤,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】陽光體育運動關乎每個學生未來的幸福生活,今年五月,我市某校開展了以陽光體育我是冠軍為主題的一分鐘限時跳繩比賽,要求每個班選2﹣3名選手參賽,現(xiàn)將80名選手比賽成績(單位:次/分鐘)進行統(tǒng)計.繪制成頻數(shù)分布直方圖,如圖所示.

1)圖中a值為  

2)將跳繩次數(shù)在160190的選手依次記為A1、A2、An,從中隨機抽取兩名選手作經(jīng)驗交流,請用樹狀或列表法求恰好抽取到的選手A1A2的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,DBC的中點,DEABE,DFACF,BE=CF

1)求證:AD平分∠BAC;

2)連接EF,求證:AD垂直平分EF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線 a≠0)的對稱軸為直線x=1,與x軸的一個交點坐標為(﹣1,0),其部分圖象如圖所示,下列結論:

①4acb2;

方程 的兩個根是x1=1,x2=3;

③3a+c0

y0時,x的取值范圍是﹣1≤x3

x0時,yx增大而增大

其中結論正確的個數(shù)是( 。

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場計劃經(jīng)銷A、B兩種新型節(jié)能臺燈共50盞,這兩種臺燈的進價、售價如下表所示.

價格/類型

A

B

進價(元/盞)

40

65

售價(元/盞)

60

100

1)若該商場購進這批臺燈共用去2500元,問這兩種臺燈各購進多少盞?

2)在每種臺燈銷售利潤不變的情況下,若該商場銷售這批臺燈的總利潤不少于1400元,問至少需購進B種臺燈多少盞?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知四邊形ABCD內接于⊙OA的中點,AEACA,與⊙OCB的延長線交于點F,E,且.

(1)求證:△ADC∽△EBA;

(2)如果AB8CD5,求tan∠CAD的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】汶川地震發(fā)生后,全國人民抗震救災,眾志成城某地政府急災民之所需,立即組織輛汽車,將三種救災物資共噸一次性運往災區(qū),假設甲、乙,丙三種車型分別運載三種物資,根據(jù)下表提供的信息解答下列問題:

車型

汽車運載量(/)

1)設裝運品種物資的車輛數(shù)分別為試用含的代數(shù)式表示

2)據(jù)(1)中的表達式,試求三種物資各幾噸.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是⊙O的內接正方形,AB=4,PC、PD是⊙O的兩條切線,C、D為切點.

(1)如圖1,求⊙O的半徑;

(2)如圖1,若點EBC的中點,連接PE,求PE的長度;

(3)如圖2,若點MBC邊上任意一點(不含B、C),以點M為直角頂點,在BC的上方作∠AMN=90°,交直線CP于點N,求證:AM=MN.

查看答案和解析>>

同步練習冊答案