【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于二、四象限內(nèi)的A、B兩點,與x軸交于C點,點A的坐標(biāo)為(- 3,4),點B的坐標(biāo)為(6,n).
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)連接OB,求△AOB 的面積;
(3)在x軸上是否存在點P,使△APC是直角三角形. 若存在,求出點P的坐標(biāo);若不存在,請說明理由.
【答案】(1)反比例函數(shù)的解析式為y=﹣ ; 一次函數(shù)的解析式為y=﹣x+2; (2);(3)存在,滿足條件的P點坐標(biāo)為(﹣3,0)、(﹣,0).
【解析】試題分析:(1)先把代入得到的值,從而確定反比例函數(shù)的解析式為;再利用反比例函數(shù)解析式確定B點坐標(biāo)為,然后運用待定系數(shù)法確定所求的一次函數(shù)的解析式為
即可求得.
(3)過A點作軸于, 交x軸于,則點的坐標(biāo)為;再證明利用相似比計算出則,所以點的坐標(biāo)為,于是得到滿足條件的P點坐標(biāo).
試題解析:
將代入,得
∴反比例函數(shù)的解析式為;
將代入,得
解得
將和分別代入得,
解得,
∴所求的一次函數(shù)的解析式為
(2)當(dāng)時, 解得:
(3)存在.
過A點作軸于, 交x軸于,如圖,
點坐標(biāo)為
點的坐標(biāo)為
而
即
點的坐標(biāo)為
∴滿足條件的點坐標(biāo)為
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系中的點P和圖形G,給出如下的定義:若在圖形G上存在一點Q ,使得P、Q之間的距離等于1,則稱P為圖形G的關(guān)聯(lián)點.
(1)當(dāng)⊙O的半徑為1時:
①點, , 中,⊙O的關(guān)聯(lián)點有_____________________.
②直線經(jīng)過(0,1)點,且與軸垂直,點P在直線上.若P是⊙O的關(guān)聯(lián)點,求點P的橫坐標(biāo)的取值范圍.
(2)已知正方形ABCD的邊長為4,中心為原點,正方形各邊都與坐標(biāo)軸垂直.若正方形各邊上的點都是某個圓的關(guān)聯(lián)點,求圓的半徑的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊△ABC中,D是邊AC上一點,連接BD,將△BCD繞點B逆時針旋轉(zhuǎn)60°,得到△BAE,連接ED,下列結(jié)論正確的有( 。﹤.
①△BED是等邊三角形;②AE∥BC; ③△ADE的周長等于BD+BC;④∠ADE=∠DBC.
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的兩個頂點A、B分別落在x、y軸上,頂點C、D位于第一象限,且OA=3,OB=2,對角線AC、BD交于點G,若曲線y經(jīng)過點C、G,則k=__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】邊長為4的等邊與等邊互相重合,將沿直線L向左平移m個單位長度,將向右也平移m個單位長度,若,則m=________;若C、E是線段BF的三等分點時,m=________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx-3交x軸于點A(﹣3,0),點B(1,0),交y軸于點E.點C是點A關(guān)于點B的對稱點,點F是線段BC的中點,直線過點F且與y軸平行.直線y=kx+3過點C,交y軸于D點.
(1)求拋物線的函數(shù)表達(dá)式;
(2)點K為線段AB上一動點,過點K作x軸的垂線與直線CD交于點H,與拋物線交于點G,求線段HG長度的最大值;
(3)在直線上取點M,在拋物線上取點N,使以點A,C,M,N為頂點的四邊形是平行四邊形,求點N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列一組圖形中點的個數(shù),其中第1個圖中共有4個點,第2個圖中共有10個點,第3個圖中共有19個點,…,按此規(guī)律第6個圖中共有點的個數(shù)是( 。
A.46B.63C.64D.73
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某樓盤一樓是車庫(暫不出售),二樓至二十三樓均為商品房(對外銷售).商品房售價方案如下:第八層售價為4000元米,從第八層起每上升一層.每平方米的售價增加50元;反之,樓層每下降一層,每平方米的售價減少30元.已知商品房每套面積均為120平方米,開發(fā)商為購買者制定了兩種購房方案:方案一:購買者先交納首付金額(商品房總價的,再辦理分期付款(即貸款).方案二:購買者若一次付清所有房款,則享受的優(yōu)惠,并免收五年物業(yè)管理費(已知每月物業(yè)管理費為元).
(1)請用含樓層(,是正整數(shù))的代數(shù)式表示售價y(元/平方米);
(2)小張已籌到160000元,若用方案一購房,他可以首付哪些樓層的商品房呢?
(3)老王想在此樓盤買房,有人建議老王使用方案二購買第十六層,但他認(rèn)為此方案還不如不免收物業(yè)管理費而直接再多享受的優(yōu)惠劃算.你認(rèn)為老王的說法一定正確嗎?請用具體數(shù)據(jù)闡明你的看法.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形ABCD的兩條對角線相交于點O,過點 A作AG⊥BD分別交BD、BC于點G、E.
(1)求證:BE2=EGEA;
(2)連接CG,若BE=CE,求證:∠ECG=∠EAC.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com