【題目】在平面直角坐標(biāo)系xOy中,函數(shù)(x>0)的圖象與直線l1:y=x+b交于點(diǎn)A(3,a-2).
(1)求a,b的值;
(2)直線l2:y=-x+m與x軸交于點(diǎn)B,與直線l1交于點(diǎn)C,若S△ABC≥6,求m的取值范圍.
【答案】(1)a=3,b=-2;(2) m≥8或m≤-2
【解析】
(1)把A點(diǎn)坐標(biāo)代入反比例解析式確定出a的值,確定出A坐標(biāo),代入一次函數(shù)解析式求出b的值;(2)分別求出直線l1與x軸交于點(diǎn)D,再求出直線l2與x軸交于點(diǎn)B,從而得出直線l2與直線l1交于點(diǎn)C坐標(biāo),分兩種情況進(jìn)行討論:①當(dāng)S△ABC=S△BCD+S△ABD=6時(shí),利用三角形的面積求出m的值,②當(dāng)S△ABC=S△BCDS△ABD=6時(shí),利用三角形的面積求出m的值,從而得出m的取值范圍.
(1)∵點(diǎn)A在圖象上
∴
∴a=3
∴A(3,1)
∵點(diǎn)A在y=x+b圖象上
∴1=3+b
∴b=-2
∴解析式y=x-2
(2)設(shè)直線y=x-2與x軸的交點(diǎn)為D
∴D(2,0)
①當(dāng)點(diǎn)C在點(diǎn)A的上方如圖(1)
∵直線y=-x+m與x軸交點(diǎn)為B
∴B(m,0)(m>3)
∵直線y=-x+m與直線y=x-2相交于點(diǎn)C
∴
解得:
∴C
∵S△ABC=S△BCD-S△ABD≥6
∴
∴m≥8
②若點(diǎn)C在點(diǎn)A下方如圖2
∵S△ABC=S△BCD+S△ABD≥6
∴
∴m≤-2
綜上所述,m≥8或m≤-2
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O.E為邊AB上一點(diǎn),且BE = 2AE.設(shè),.
(1)填空:向量 ;
(2)如果點(diǎn)F是線段OC的中點(diǎn),那么向量 ,并在圖中畫出向量在向量和方向上的分向量.
注:本題結(jié)果用向量的式子表示.畫圖不要求寫作法,但要指出所作圖中表示結(jié)論的向量.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD的對(duì)角線AC,BD交于O,EF過點(diǎn)O與AD,BC分別交于E,F,若AB=4,BC=5,OE=1.5,則四邊形EFCD的周長(zhǎng)_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)是所對(duì)弦上一動(dòng)點(diǎn),點(diǎn)在的延長(zhǎng)線上,過點(diǎn)作交于點(diǎn),連接,已知,,設(shè),兩點(diǎn)間的距離為,的面積為.(當(dāng)點(diǎn)與點(diǎn),重合時(shí),的值為0.)
小亮根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)隨自變量的變化而變化的規(guī)律進(jìn)行了探究.
下面是小亮的探究過程,請(qǐng)補(bǔ)充完整:
(1)通過取點(diǎn)、畫圖、測(cè)量,得到了與的幾組值,如下表:
3 | 4 | 5 | 6 | 7 | 8 | 9 | |
0 | 4.47 | 7.07 | 9.00 | 8.94 | 0 |
(2)在平面直角坐標(biāo)系中,描出以補(bǔ)全后的表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象;
(3)結(jié)合畫出的函數(shù)圖象,解決問題:當(dāng)的面積為時(shí),的長(zhǎng)度約為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形 ABCD 中,M 是 BC 邊上一點(diǎn),且點(diǎn) M 不與 B、C 重合,點(diǎn) P 在射線 AM 上,將線段 AP 繞點(diǎn) A 順時(shí)針旋轉(zhuǎn) 90°得到線段 AQ,連接BP,DQ.
(1)依題意補(bǔ)全圖 1;
(2)①連接 DP,若點(diǎn) P,Q,D 恰好在同一條直線上,求證:DP2+DQ2=2AB2;
②若點(diǎn) P,Q,C 恰好在同一條直線上,則 BP 與 AB 的數(shù)量關(guān)系為: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于平面上兩點(diǎn)A,B,給出如下定義:以點(diǎn)A或B為圓心,AB長(zhǎng)為半徑的圓稱為點(diǎn)A,B的“確定圓”.如圖為點(diǎn)A,B的“確定圓”的示意圖.
(1)已知點(diǎn)A的坐標(biāo)為(-1,0),點(diǎn)B的坐標(biāo)為(3,3),則點(diǎn)A,B的“確定圓”的面積為______;
(2)已知點(diǎn)A的坐標(biāo)為(0,0),若直線y=x+b上只存在一個(gè)點(diǎn)B,使得點(diǎn)A,B的“確定圓”的面積為9π,求點(diǎn)B的坐標(biāo);
(3)已知點(diǎn)A在以P(m,0)為圓心,以1為半徑的圓上,點(diǎn)B在直線上,若要使所有點(diǎn)A,B的“確定圓”的面積都不小于9π,直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是“作三角形一邊上的高”的尺規(guī)作圖過程.
已知:△ABC.
求作:△ABC的邊BC上的高AD.
作法:如圖2,
(1)分別以點(diǎn)B和點(diǎn)C為圓心,BA,CA為半徑作弧,兩弧相交于點(diǎn)E;
(2)作直線AE交BC邊于點(diǎn)D.所以線段AD就是所求作的高.
請(qǐng)回答:該尺規(guī)作圖的依據(jù)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=90°,M是BC的中點(diǎn),延長(zhǎng)AM到點(diǎn)D,AE=AD,∠EAD=90°,CE交AB于點(diǎn)F,CD=DF.
(1)∠CAD=______度;
(2)求∠CDF的度數(shù);
(3)用等式表示線段CD和CE之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,弦AB與DC相交于點(diǎn)E,AB=CD.
(1)求證:△AEC≌△DEB;
(2)點(diǎn)B與點(diǎn)C關(guān)于直線OE對(duì)稱嗎?試說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com