已知:如圖①,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,點P由B出發(fā)沿BA方向向點A勻速運動,速度為1cm/s;點Q由A出發(fā)沿AC方向向點C勻速運動,速度為2cm/s;連接PQ.若設(shè)運動的時間為t(s)(0<t<2),解答下列問題:
(1)當(dāng)t為何值時,PQ∥BC;
(2)設(shè)△AQP的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;
(3)是否存在某一時刻t,使線段PQ恰好把Rt△ACB的周長和面積同時平分?若存在,求出此時t的值;若不存在,說明理由;
(4)如圖②,連接PC,并把△PQC沿QC翻折,得到四邊形PQP′C,那么是否存在某一時刻t,使四邊形PQP′C為菱形?若存在,求出此時菱形的邊長;若不存在,說明理由.
精英家教網(wǎng)
分析:(1)當(dāng)PQ∥BC時,我們可得出三角形APQ和三角形ABC相似,那么可得出關(guān)于AP,AB,AQ,AC的比例關(guān)系,我們觀察這四條線段,已知的有AC,根據(jù)P,Q的速度,可以用時間t表示出AQ,BP的長,而AB可以用勾股定理求出,這樣也就可以表示出AP,那么將這些數(shù)值代入比例關(guān)系式中,即可得出t的值.
(2)求三角形APQ的面積就要先確定底邊和高的值,底邊AQ可以根據(jù)Q的速度和時間t表示出來.關(guān)鍵是高,可以用AP和∠A的正弦值來求.AP的長可以用AB-BP求得,而sinA就是BC:AB的值,因此表示出AQ和AQ邊上的高后,就可以得出y與t的函數(shù)關(guān)系式.
(3)如果將三角形ABC的周長和面積平分,那么AP+AQ=BP+BC+CQ,那么可以用t表示出CQ,AQ,AP,BP的長,那么可以求出此時t的值,我們可將t的值代入(2)的面積與t的關(guān)系式中,求出此時面積是多少,然后看看面積是否是三角形ABC面積的一半,從而判斷出是否存在這一時刻.
(4)我們可通過構(gòu)建相似三角形來求解.過點P作PM⊥AC于M,PN⊥BC于N,那么PNCM就是個矩形,解題思路:通過三角形BPN和三角形ABC相似,得出關(guān)于BP,PN,AB,AC的比例關(guān)系,即可用t表示出PN的長,也就表示出了MC的長,要想使四邊形PQP'C是菱形,PQ=PC,根據(jù)等腰三角形三線合一的特點,QM=MC,這樣有用t表示出的AQ,QM,MC三條線段和AC的長,就可以根據(jù)AC=AQ+QM+MC來求出t的值.求出了t就可以得出QM,CM和PM的長,也就能求出菱形的邊長了.
解答:精英家教網(wǎng)解:(1)在Rt△ABC中,AB=
BC2+AC2
=5
,
由題意知:AP=5-t,AQ=2t,若PQ∥BC,則△APQ∽△ABC,
AQ
AC
=
AP
AB
,∴
2t
4
=
5-t
5
,
∴t=
10
7
.所以當(dāng)t=
10
7
時,PQ∥BC.

(2)過點P作PH⊥AC于H.
∵△APH∽△ABC,
PH
BC
=
AP
AB

PH
3
=
5-t
5
,
∴PH=3-
3
5
t,
∴y=
1
2
×AQ×PH=
1
2
×2t×(3-
3
5
t)=-
3
5
t2+3t.

(3)若PQ把△ABC周長平分,則AP+AQ=BP+BC+CQ.
∴(5-t)+2t=t+3+(4-2t),解得t=1.
若PQ把△ABC面積平分,則S△APQ=
1
2
S△ABC,即-
3
5
t2
+3t=3.
∵t=1代入上面方程不成立,
∴不存在這一時刻t,使線段PQ把Rt△ACB的周長和面積同時平分.

(4)過點P作PM⊥AC于M,PN⊥BC于N,精英家教網(wǎng)
若四邊形PQP'C是菱形,那么PQ=PC.
∵PM⊥AC于M,
∴QM=CM.
∵PN⊥BC于N,易知△PBN∽△ABC.
PN
AC
=
BP
AB
,∴
PN
4
=
t
5
,
∴PN=
4t
5
,
∴QM=CM=
4t
5

4
5
t+
4
5
t+2t=4,解得:t=
10
9

∴當(dāng)t=
10
9
s時,四邊形PQP'C是菱形.
此時PM=3-
3
5
t=
7
3
cm,CM=
4
5
t=
8
9
cm,
在Rt△PMC中,PC=
PM2+CM2
=
49
9
+
64
81
=
505
9
cm,
∴菱形PQP′C邊長為
505
9
cm.
點評:本題圖形結(jié)合的動態(tài)題,是近幾年考試熱點,同時考查三角形相似知識,是一道很好的綜合題.本題亮點是巧妙結(jié)合圖形綜合考查不同知識點.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•閘北區(qū)一模)已知:如圖1,在Rt△OAC中,AO⊥OC,點B在OC邊上,OB=6,BC=12,∠ABO+∠C=90°.動點M和N分別在線段AB和AC邊上.
(l)求證△AOB∽△COA,并求cosC的值;
(2)當(dāng)AM=4時,△AMN與△ABC相似,求△AMN與△ABC的面積之比;
(3)如圖2,當(dāng)MN∥BC時,將△AMN沿MN折疊,點A落在四邊形BCNM所在平面的點為點E.設(shè)MN=x,△EMN與四邊形BCNM重疊部分的面積為y,試寫出y關(guān)于x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

根據(jù)所給的基本材料,請你進行適當(dāng)?shù)奶幚,編寫一道綜合題.
編寫要求:①提出具有綜合性、連續(xù)性的三個問題;②給出正確的解答過程;③寫出編寫意圖和學(xué)生答題情況的預(yù)測.
材料①:如圖,先把一矩形紙片ABCD對折,得到折痕MN,然后把B點疊在折痕線上,得到△ABE,再過點B把矩形ABCD第三次折疊,使點D落在直線AD上,得到折痕PQ.當(dāng)沿著BE第四次將該紙片折疊后,點A就會落在EC上.
精英家教網(wǎng)
材料②:已知AC是∠MAN的平分線.
(1)在圖1中,若∠MAN=120°,∠ABC=ADC=90°,求證:AB+AD=AC;
(2)在圖2中,若∠MAN=120°,∠ABC+∠ADC=180°,則(1)中的結(jié)論是否仍然成立?若成立,請給出證明;若不成立,請說明理由;
(3)在圖3中:若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,
則AB+AD=
 
AC(用含α的三角函數(shù)表示).
精英家教網(wǎng)
材料③:
已知:如圖甲,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,點P由B出發(fā)沿線段BA向點A勻速運動,速度為1cm/s;點Q由A出發(fā)沿線段AC向點C勻速運動,速度為2cm/s;連接PQ,設(shè)運動的時間為t(s)(0<t<2).
精英家教網(wǎng)
編寫試題選取的材料是
 
(填寫材料的序號)
編寫的試題是:(1)設(shè)△AQP的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式.
(2)是否存在某一時刻t,使線段PQ恰好把Rt△ACB的周長和面積同時平分?若存在,求出此時t的值.
(3)如圖(2),連接PC,并把△PQC沿QC翻折得到四邊形PQP'C.是否存在某一時刻t,使四邊形PQP'C為菱形?若存在,求出此時菱形的邊長.
試題解答(寫出主要步驟即可):(1)過點Q作QD⊥AP于點D,證△AQD∽△ABC,利用相似性質(zhì)及面積解答;
(2)分別求得Rt△ACB的周長和面積,由周長求出t,代入函數(shù)解析式驗證;
(3)利用余弦定理得出PC、PQ,聯(lián)立方程,求得t,再代入PC解得答案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖1,在Rt⊿ACB中,∠C=90°,AC=4cm,BC=3cm,點P由點B出發(fā)沿BA方向向點A勻速運動,速度為1cm/s;點Q由點A出發(fā)沿AC方向向點C勻速運動,速度為2cm/s;連接PQ.若設(shè)運動的時間為t(s)(0<t<2).解答下列問題:

1.①.當(dāng)t為何值時,PQ∥BC? 

2.②.設(shè)⊿AQP的面積為y(cm),求y與t之間的函數(shù)關(guān)系式;

3.③.是否存在某一時刻t,使線段PQ恰好把Rt⊿ACB的周長和面積同時平分?若存在,求出此時t的值;若不存在,說明理由;

4.④.如圖2,連接PC,并把⊿PQC沿QC翻折,得到四邊形PQC,那么是否存在某時刻t,使四邊形PQC為菱形?若存在,求出此時菱形的邊長;若不存在,說明理由。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年重慶市萬州區(qū)初中數(shù)學(xué)教師專業(yè)知識競賽試卷(解析版) 題型:解答題

根據(jù)所給的基本材料,請你進行適當(dāng)?shù)奶幚,編寫一道綜合題.
編寫要求:①提出具有綜合性、連續(xù)性的三個問題;②給出正確的解答過程;③寫出編寫意圖和學(xué)生答題情況的預(yù)測.
材料①:如圖,先把一矩形紙片ABCD對折,得到折痕MN,然后把B點疊在折痕線上,得到△ABE,再過點B把矩形ABCD第三次折疊,使點D落在直線AD上,得到折痕PQ.當(dāng)沿著BE第四次將該紙片折疊后,點A就會落在EC上.

材料②:已知AC是∠MAN的平分線.
(1)在圖1中,若∠MAN=120°,∠ABC=ADC=90°,求證:AB+AD=AC;
(2)在圖2中,若∠MAN=120°,∠ABC+∠ADC=180°,則(1)中的結(jié)論是否仍然成立?若成立,請給出證明;若不成立,請說明理由;
(3)在圖3中:若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,
則AB+AD=______AC(用含α的三角函數(shù)表示).

材料③:
已知:如圖甲,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,點P由B出發(fā)沿線段BA向點A勻速運動,速度為1cm/s;點Q由A出發(fā)沿線段AC向點C勻速運動,速度為2cm/s;連接PQ,設(shè)運動的時間為t(s)(0<t<2).

編寫試題選取的材料是______(填寫材料的序號)
編寫的試題是:(1)設(shè)△AQP的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式.
(2)是否存在某一時刻t,使線段PQ恰好把Rt△ACB的周長和面積同時平分?若存在,求出此時t的值.
(3)如圖(2),連接PC,并把△PQC沿QC翻折得到四邊形PQP'C.是否存在某一時刻t,使四邊形PQP'C為菱形?若存在,求出此時菱形的邊長.
試題解答(寫出主要步驟即可):(1)過點Q作QD⊥AP于點D,證△AQD∽△ABC,利用相似性質(zhì)及面積解答;
(2)分別求得Rt△ACB的周長和面積,由周長求出t,代入函數(shù)解析式驗證;
(3)利用余弦定理得出PC、PQ,聯(lián)立方程,求得t,再代入PC解得答案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年四川省九年級上學(xué)期10月月考數(shù)學(xué)卷 題型:解答題

已知:如圖1,在Rt⊿ACB中,∠C=90°,AC=4cm,BC=3cm,點P由點B出發(fā)沿BA方向向點A勻速運動,速度為1cm/s;點Q由點A出發(fā)沿AC方向向點C勻速運動,速度為2cm/s;連接PQ.若設(shè)運動的時間為t(s)(0<t<2).解答下列問題:

1.①.當(dāng)t為何值時,PQ∥BC? 

2.②.設(shè)⊿AQP的面積為y(cm),求y與t之間的函數(shù)關(guān)系式;

3.③.是否存在某一時刻t,使線段PQ恰好把Rt⊿ACB的周長和面積同時平分?若存在,求出此時t的值;若不存在,說明理由;

4.④.如圖2,連接PC,并把⊿PQC沿QC翻折,得到四邊形PQC,那么是否存在某時刻t,使四邊形PQC為菱形?若存在,求出此時菱形的邊長;若不存在,說明理由。

 

查看答案和解析>>

同步練習(xí)冊答案