【題目】已知△.
(1)在圖中用直尺和圓規(guī)作出的平分線和邊的垂直平分線交于點(保留作圖痕跡,不寫作法).
(2)在(1)的條件下,若點、分別是邊和上的點,且,連接求證:;
(3)如圖,在(1)的條件下,點、分別是、邊上的點,且△的周長等于邊的長,試探究與的數(shù)量關(guān)系,并說明理由.
【答案】(1)見解析;(2)見解析;(3)與的數(shù)量關(guān)系是,理由見解析.
【解析】
(1)利用基本作圖作∠ABC的平分線;利用基本作圖作BC的垂直平分線,即可完成;
(2)如圖,設(shè)BC的垂直平分線交BC于G,作OH⊥AB于H,
用角平分線的性質(zhì)證明OH=OG,BH=BG,繼而證明EH =DG,然后可證明,于是可得到OE=OD;
(3)作OH⊥AB于H,OG⊥CB于G,在CB上取CD=BE,利用(2)得到 CD=BE,,OE=OD,,,可證明,故有,由△的周長=BC可得到DF=EF,于是可證明,所以有,然后可得到與的數(shù)量關(guān)系.
解:(1)如圖,就是所要求作的圖形;
(2)如圖,設(shè)BC的垂直平分線交BC于G,作OH⊥AB于H,
∵BO平分∠ABC,OH⊥AB,OG垂直平分BC,
∴OH=OG,CG=BG,
∵OB=OB,
∴,
∴BH=BG,
∵BE=CD,
∴EH=BH-BE=BG-CD=CG-CD=DG,
在和中,
,
∴,
∴OE=OD.
(3)與的數(shù)量關(guān)系是,理由如下;
如圖,作OH⊥AB于H,OG⊥CB于G,在CB上取CD=BE,
由(2)可知,因為 CD=BE,所以且OE=OD,
∴,,
∴,
∴,
∵△的周長=BE+BF+EF=CD+BF+EF=BC
∴DF=EF,
在△和△中,
,
∴,
∴,
∴,
∴.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖分別是某班全體學(xué)生上學(xué)時乘車、步行、騎車人數(shù)的分布直方圖和扇形統(tǒng)計圖(兩圖都不完整),下列結(jié)論錯誤的是( )
A. 該班總?cè)藬?shù)為50人B. 步行人數(shù)為30人
C. 乘車人數(shù)是騎車人數(shù)的2.5倍D. 騎車人數(shù)占20%
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有個均勻的正十二面體的骰子,其中1個面標有“1”,2個面標有“2”,3個面標有“3”,2個面標有“4”,1個面標有“5”,其余面標有“6”,將這個骰子擲出后:
(1)擲出“6”朝上的可能性有多大?
(2)哪些數(shù)字朝上的可能性一樣大?
(3)哪些數(shù)字朝上的可能性最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB=AC,CD⊥AB于D,BE⊥AC于E,BE與CD相交于點O.
(1)問題探究:線段OB,OC有何數(shù)量關(guān)系,并說明理由;
(2)問題拓展:分別連接OA,BC,試判斷直線OA,BC的位置關(guān)系,并說明理由;
(3)問題延伸:將題目條件中的“CD⊥AB于D,BE⊥AC于E”換成“D、E分別為AB,AC邊上的中點”,(1)(2)中的結(jié)論還成立嗎?請直接寫出結(jié)論,不必說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形中,,,點從開始沿折線以的速度運動,點從開始沿邊以的速度移動,如果點、分別從、同時出發(fā),當其中一點到達時,另一點也隨之停止運動,設(shè)運動時間為,當________時,四邊形也為矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,BE=EC,將正方形ABCD的邊CD沿DE折疊到DF,連接EF、FC、FB,若△DFC的面積為16,則△BEF的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+c的頂點坐標為P(2,9),與x軸交于點A,B,與y軸交于點C(0,5).
(Ⅰ)求二次函數(shù)的解析式及點A,B的坐標;
(Ⅱ)設(shè)點Q在第一象限的拋物線上,若其關(guān)于原點的對稱點Q′也在拋物線上,求點Q的坐標;
(Ⅲ)若點M在拋物線上,點N在拋物線的對稱軸上,使得以A,C,M,N為頂點的四邊形是平行四邊形,且AC為其一邊,求點M,N的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中,,點為三條角平分線的交點,于,于,于,且,,,則點到三邊、、的距離為( )
A. 2cm,2cm,2cm B. 3cm,3cm,3cm
C. 4cm,4cm,4cm D. 2cm,3cm,5cm
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com